organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o682-o683

4,4′-[Ethylenebis(nitrilo­methyl­idyne)]dibenzo­nitrile

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 26 February 2009; accepted 27 February 2009; online 6 March 2009)

The mol­ecule of the title Schiff base compound, C18H14N4, lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine (C=N) bonds. The imino groups are coplanar with the aromatic rings with a maximum deviation of 0.1574 (12) Å for the N atom. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the dimethyl­ene bridge. In the crystal structure, pairs of inter­molecular C—H⋯N hydrogen bonds link neighbouring mol­ecules into centrosymmetric dimers with R22(10) ring motifs. An inter­esting feature of the crystal structure is the short inter­molecular C⋯C inter­action with a distance of 3.3821 (13) Å, which is shorter than the sum of the van der Waals radius of a carbon atom.

Related literature

For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures see, for example: Fun & Kia (2008[Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, o1722-o1723.]): Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]); Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]). For information on Schiff base complexes and their applications, see, for example, Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Calligaris & Randaccio, (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]). Hou et al. (2001[Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042-7048.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N4

  • Mr = 286.33

  • Triclinic, [P \overline 1]

  • a = 4.6843 (2) Å

  • b = 6.9872 (3) Å

  • c = 11.6208 (5) Å

  • α = 78.147 (3)°

  • β = 87.462 (3)°

  • γ = 74.081 (2)°

  • V = 357.94 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.45 × 0.29 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.995

  • 7927 measured reflections

  • 2551 independent reflections

  • 2034 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.146

  • S = 1.08

  • 2551 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N2i 0.93 2.60 3.4702 (12) 156
Symmetry code: (i) -x+3, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supporting information


Comment top

Schiff bases are among the most prevalent mixed-donor ligands in the field of coordination chemistry in which there has been growing interest, mainly because of their wide application in the areas such as biochemistry, synthesis, and catalysis (Pal et al., 2005; Hou et al., 2001; Ren et al., 2002). Many Schiff base complexes have been structurally characterized, but only a relatively small number of free Schiff bases have had their X-ray structures reported (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008) on the structural characterization of Schiff base ligands, the title compound (I), is reported here.

The molecule of the title compound, (Fig. 1), lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine (CN) bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with the values found in related structures (Fun & Kia 2008; Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008). The two planar units are parallel but extend in opposite directions from the dimethylene bridge. The interesting feature of the crystal structure is the short intermolecular C3···C6 interactions [symmetry code: 1 + x, y, z] with a distance of 3.3821 (13) Å, which is shorter than the sum of the van der Waals radius of carbon atom. In the crystal structure, pairs of intermolecular C—H···N hydrogen bonds link neighbouring molecules into dimer with R22(10) ring motif (Bernstein et al., 1995) (Table 1, Fig. 2).

Related literature top

For bond-length data, see Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures see, for example: Fun & Kia (2008): Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008). For information on Schiff base complexes and their applications, see, for example, Pal et al. (2005); Calligaris & Randaccio, (1987). Hou et al. (2001); Ren et al. (2002). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The synthetic method has been described earlier (Fun, Kargar, & Kia, 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

All of the hydrogen atoms were positioned geometrically with C—H = 0.95 or 0.97 Å and refined in riding mode with Uiso (H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. The suffix A corresponds to symmetry code [-x + 1, -y, -z].
[Figure 2] Fig. 2. The crystal packing of (I), viewed approximately down the a-axis, showing dimer formation by R22(10) ring motif. Intermolecular interactions are shown as dashed lines.
4,4'-[Ethylenebis(nitrilomethylidyne)]dibenzonitrile top
Crystal data top
C18H14N4Z = 1
Mr = 286.33F(000) = 150
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6843 (2) ÅCell parameters from 3276 reflections
b = 6.9872 (3) Åθ = 3.1–36.3°
c = 11.6208 (5) ŵ = 0.08 mm1
α = 78.147 (3)°T = 100 K
β = 87.462 (3)°Plate, colourless
γ = 74.081 (2)°0.45 × 0.29 × 0.06 mm
V = 357.94 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed tube2034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 32.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 67
Tmin = 0.964, Tmax = 0.995k = 1010
7927 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0885P)2 + 0.0252P]
where P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H14N4γ = 74.081 (2)°
Mr = 286.33V = 357.94 (3) Å3
Triclinic, P1Z = 1
a = 4.6843 (2) ÅMo Kα radiation
b = 6.9872 (3) ŵ = 0.08 mm1
c = 11.6208 (5) ÅT = 100 K
α = 78.147 (3)°0.45 × 0.29 × 0.06 mm
β = 87.462 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2034 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.995Rint = 0.023
7927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
2551 reflectionsΔρmin = 0.25 e Å3
100 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.59056 (17)0.17735 (11)0.08275 (6)0.01615 (18)
N21.42099 (19)0.74379 (12)0.37951 (7)0.0216 (2)
C10.8714 (2)0.45474 (13)0.15338 (7)0.01522 (19)
H1A0.79120.49270.07760.018*
C21.0275 (2)0.57187 (13)0.19178 (8)0.01621 (19)
H2A1.05520.68730.14160.019*
C31.14366 (19)0.51580 (13)0.30666 (7)0.01489 (19)
C41.1063 (2)0.34172 (13)0.38257 (7)0.01654 (19)
H4A1.18450.30470.45860.020*
C50.9504 (2)0.22467 (13)0.34268 (8)0.01632 (19)
H5A0.92350.10880.39270.020*
C60.83369 (19)0.27878 (13)0.22843 (7)0.01374 (18)
C70.67371 (19)0.14854 (13)0.18937 (7)0.01451 (18)
H7A0.63220.04240.24400.017*
C80.4324 (2)0.03967 (13)0.05429 (7)0.01563 (19)
H8A0.22430.11080.03940.019*
H8B0.44600.07320.12020.019*
C91.2999 (2)0.64058 (13)0.34745 (7)0.01641 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0164 (4)0.0181 (3)0.0170 (3)0.0075 (3)0.0010 (3)0.0063 (3)
N20.0229 (4)0.0232 (4)0.0216 (4)0.0100 (3)0.0030 (3)0.0054 (3)
C10.0149 (4)0.0185 (4)0.0139 (4)0.0058 (3)0.0021 (3)0.0047 (3)
C20.0167 (4)0.0168 (4)0.0169 (4)0.0068 (3)0.0011 (3)0.0040 (3)
C30.0127 (4)0.0173 (4)0.0168 (4)0.0051 (3)0.0004 (3)0.0067 (3)
C40.0169 (4)0.0191 (4)0.0151 (4)0.0059 (3)0.0028 (3)0.0047 (3)
C50.0175 (4)0.0166 (4)0.0159 (4)0.0063 (3)0.0015 (3)0.0029 (3)
C60.0120 (4)0.0157 (4)0.0149 (4)0.0040 (3)0.0001 (3)0.0056 (3)
C70.0142 (4)0.0159 (4)0.0153 (4)0.0059 (3)0.0003 (3)0.0050 (3)
C80.0159 (4)0.0183 (4)0.0162 (4)0.0085 (3)0.0008 (3)0.0058 (3)
C90.0158 (4)0.0182 (4)0.0159 (4)0.0047 (3)0.0012 (3)0.0046 (3)
Geometric parameters (Å, º) top
N1—C71.2745 (11)C4—C51.3893 (12)
N1—C81.4585 (11)C4—H4A0.9300
N2—C91.1551 (11)C5—C61.3962 (12)
C1—C21.3821 (11)C5—H5A0.9300
C1—C61.4031 (12)C6—C71.4730 (11)
C1—H1A0.9300C7—H7A0.9300
C2—C31.4017 (12)C8—C8i1.5246 (16)
C2—H2A0.9300C8—H8A0.9700
C3—C41.3966 (12)C8—H8B0.9700
C3—C91.4389 (11)
C7—N1—C8117.00 (7)C6—C5—H5A119.6
C2—C1—C6120.14 (8)C5—C6—C1119.61 (8)
C2—C1—H1A119.9C5—C6—C7118.94 (7)
C6—C1—H1A119.9C1—C6—C7121.45 (8)
C1—C2—C3119.68 (8)N1—C7—C6121.78 (8)
C1—C2—H2A120.2N1—C7—H7A119.1
C3—C2—H2A120.2C6—C7—H7A119.1
C4—C3—C2120.80 (8)N1—C8—C8i109.60 (9)
C4—C3—C9119.58 (8)N1—C8—H8A109.8
C2—C3—C9119.61 (7)C8i—C8—H8A109.8
C5—C4—C3118.95 (8)N1—C8—H8B109.8
C5—C4—H4A120.5C8i—C8—H8B109.8
C3—C4—H4A120.5H8A—C8—H8B108.2
C4—C5—C6120.81 (8)N2—C9—C3178.76 (9)
C4—C5—H5A119.6
C6—C1—C2—C31.03 (13)C4—C5—C6—C7179.13 (7)
C1—C2—C3—C40.65 (13)C2—C1—C6—C51.07 (13)
C1—C2—C3—C9178.50 (7)C2—C1—C6—C7178.76 (7)
C2—C3—C4—C50.28 (13)C8—N1—C7—C6179.67 (7)
C9—C3—C4—C5178.86 (7)C5—C6—C7—N1172.24 (8)
C3—C4—C5—C60.32 (14)C1—C6—C7—N17.59 (14)
C4—C5—C6—C10.71 (14)C7—N1—C8—C8i131.42 (10)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N2ii0.932.603.4702 (12)156
Symmetry code: (ii) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H14N4
Mr286.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.6843 (2), 6.9872 (3), 11.6208 (5)
α, β, γ (°)78.147 (3), 87.462 (3), 74.081 (2)
V3)357.94 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.29 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.964, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
7927, 2551, 2034
Rint0.023
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.146, 1.08
No. of reflections2551
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N2i0.93002.60003.4702 (12)156.00
Symmetry code: (i) x+3, y+1, z+1.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008). Acta Cryst. E64, o1722–o1723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.  Web of Science CrossRef CAS Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o682-o683
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds