organic compounds
N,N′-Bis(2-hydroxy-3-ethoxybenzylidene)butane-1,4-diamine
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my
The title Schiff base compound, C22H28N2O4, lies across a crystallographic inversion centre and adopts an E configuration with respect to the C=N bond. Pairs of weak intermolecular C—H⋯O interactions link neighbouring molecules into dimers with an R22(28) ring motif. The is stabilized by intermolecular C—H⋯π interactions. An intramolecular O—H⋯N hydrogen bond occurs.
Related literature
For hydrogen-bond motifs, see: Bernstein et al. (1995). For information on Schiff base ligands and complexes and their applications, see, for example: Calligaris & Randaccio (1987); Casellato & Vigato (1977); Fun & Kia (2008a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809007545/at2734sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007545/at2734Isup2.hkl
The synthetic method has been described earlier (Fun, Kia & Kargar et al., 2008b), except that 2-hydroxy-3-ethoxysalicylaldehyde was used . Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.
H atom of the hydroxy group was positioned by a freely rotating O—H bond and constrained with a fixed distance of 0.84 Å. The rest of the hydrogen atoms were positioned geometrically with a riding model approximation with C—H = 0.95-0.99 Å and Uiso(H) = 1.2 or 1.5 (C & O). A rotating group model was used for methyl group.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).C22H28N2O4 | Z = 1 |
Mr = 384.46 | F(000) = 206 |
Triclinic, P1 | Dx = 1.294 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8647 (2) Å | Cell parameters from 2475 reflections |
b = 6.9052 (2) Å | θ = 2.5–29.4° |
c = 10.8083 (3) Å | µ = 0.09 mm−1 |
α = 92.779 (2)° | T = 100 K |
β = 99.908 (2)° | Plate, yellow |
γ = 101.239 (2)° | 0.45 × 0.19 × 0.07 mm |
V = 493.23 (2) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 2954 independent reflections |
Radiation source: fine-focus sealed tube | 2157 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 30.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −9→9 |
Tmin = 0.961, Tmax = 0.994 | k = −9→9 |
8962 measured reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0681P)2 + 0.047P] where P = (Fo2 + 2Fc2)/3 |
2954 reflections | (Δ/σ)max < 0.001 |
129 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C22H28N2O4 | γ = 101.239 (2)° |
Mr = 384.46 | V = 493.23 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.8647 (2) Å | Mo Kα radiation |
b = 6.9052 (2) Å | µ = 0.09 mm−1 |
c = 10.8083 (3) Å | T = 100 K |
α = 92.779 (2)° | 0.45 × 0.19 × 0.07 mm |
β = 99.908 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2954 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2157 reflections with I > 2σ(I) |
Tmin = 0.961, Tmax = 0.994 | Rint = 0.033 |
8962 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.43 e Å−3 |
2954 reflections | Δρmin = −0.27 e Å−3 |
129 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.69496 (13) | 0.51130 (12) | 0.23213 (9) | 0.0191 (2) | |
H1 | 0.5792 | 0.4902 | 0.1870 | 0.029* | |
O2 | 1.05734 (12) | 0.52787 (12) | 0.36073 (8) | 0.0178 (2) | |
N1 | 0.35928 (15) | 0.30726 (15) | 0.10848 (10) | 0.0181 (2) | |
C1 | 0.75200 (17) | 0.33702 (16) | 0.25124 (11) | 0.0149 (2) | |
C2 | 0.94642 (17) | 0.34181 (16) | 0.32117 (11) | 0.0157 (2) | |
C3 | 1.00920 (18) | 0.16571 (17) | 0.34438 (12) | 0.0177 (2) | |
H3A | 1.1398 | 0.1690 | 0.3921 | 0.021* | |
C4 | 0.88179 (18) | −0.01729 (17) | 0.29812 (12) | 0.0188 (3) | |
H4A | 0.9259 | −0.1372 | 0.3146 | 0.023* | |
C5 | 0.69162 (18) | −0.02237 (17) | 0.22845 (12) | 0.0178 (2) | |
H5A | 0.6058 | −0.1462 | 0.1964 | 0.021* | |
C6 | 0.62455 (17) | 0.15406 (16) | 0.20476 (11) | 0.0157 (2) | |
C7 | 0.42169 (18) | 0.14831 (17) | 0.13323 (11) | 0.0169 (2) | |
H7A | 0.3346 | 0.0238 | 0.1046 | 0.020* | |
C8 | 0.15522 (17) | 0.29668 (17) | 0.03663 (12) | 0.0185 (3) | |
H8A | 0.0561 | 0.2041 | 0.0735 | 0.022* | |
H8B | 0.1478 | 0.2459 | −0.0517 | 0.022* | |
C9 | 0.10389 (17) | 0.50109 (17) | 0.03934 (11) | 0.0170 (2) | |
H9A | 0.2076 | 0.5946 | 0.0065 | 0.020* | |
H9B | 0.1064 | 0.5488 | 0.1276 | 0.020* | |
C10 | 1.26442 (17) | 0.54481 (17) | 0.42136 (12) | 0.0182 (3) | |
H10A | 1.3370 | 0.4755 | 0.3676 | 0.022* | |
H10B | 1.2713 | 0.4857 | 0.5032 | 0.022* | |
C11 | 1.35712 (19) | 0.76329 (19) | 0.44083 (13) | 0.0227 (3) | |
H11A | 1.5003 | 0.7823 | 0.4795 | 0.034* | |
H11B | 1.2866 | 0.8291 | 0.4964 | 0.034* | |
H11C | 1.3448 | 0.8205 | 0.3593 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0164 (4) | 0.0136 (4) | 0.0265 (5) | 0.0048 (3) | −0.0003 (3) | 0.0029 (3) |
O2 | 0.0134 (4) | 0.0146 (4) | 0.0234 (5) | 0.0009 (3) | 0.0006 (3) | 0.0005 (3) |
N1 | 0.0145 (5) | 0.0188 (5) | 0.0215 (5) | 0.0055 (4) | 0.0021 (4) | 0.0024 (4) |
C1 | 0.0163 (6) | 0.0129 (5) | 0.0168 (6) | 0.0040 (4) | 0.0054 (4) | 0.0031 (4) |
C2 | 0.0154 (6) | 0.0149 (5) | 0.0172 (6) | 0.0021 (4) | 0.0051 (4) | 0.0015 (4) |
C3 | 0.0143 (6) | 0.0190 (6) | 0.0203 (6) | 0.0050 (4) | 0.0023 (5) | 0.0029 (4) |
C4 | 0.0194 (6) | 0.0149 (5) | 0.0237 (6) | 0.0069 (4) | 0.0044 (5) | 0.0039 (4) |
C5 | 0.0175 (6) | 0.0133 (5) | 0.0223 (6) | 0.0030 (4) | 0.0029 (5) | 0.0015 (4) |
C6 | 0.0142 (6) | 0.0157 (5) | 0.0176 (6) | 0.0038 (4) | 0.0033 (4) | 0.0021 (4) |
C7 | 0.0154 (6) | 0.0154 (5) | 0.0192 (6) | 0.0019 (4) | 0.0027 (5) | 0.0011 (4) |
C8 | 0.0137 (6) | 0.0187 (6) | 0.0221 (6) | 0.0043 (4) | 0.0001 (5) | 0.0009 (5) |
C9 | 0.0157 (6) | 0.0176 (5) | 0.0186 (6) | 0.0055 (4) | 0.0032 (5) | 0.0025 (4) |
C10 | 0.0128 (6) | 0.0193 (6) | 0.0221 (6) | 0.0029 (4) | 0.0030 (5) | 0.0009 (4) |
C11 | 0.0150 (6) | 0.0219 (6) | 0.0291 (7) | 0.0006 (4) | 0.0021 (5) | 0.0027 (5) |
O1—C1 | 1.3507 (12) | C6—C7 | 1.4641 (15) |
O1—H1 | 0.8400 | C7—H7A | 0.9500 |
O2—C2 | 1.3662 (13) | C8—C9 | 1.5201 (15) |
O2—C10 | 1.4391 (13) | C8—H8A | 0.9900 |
N1—C7 | 1.2776 (14) | C8—H8B | 0.9900 |
N1—C8 | 1.4666 (14) | C9—C9i | 1.527 (2) |
C1—C6 | 1.4037 (16) | C9—H9A | 0.9900 |
C1—C2 | 1.4096 (16) | C9—H9B | 0.9900 |
C2—C3 | 1.3871 (15) | C10—C11 | 1.5081 (17) |
C3—C4 | 1.4033 (17) | C10—H10A | 0.9900 |
C3—H3A | 0.9500 | C10—H10B | 0.9900 |
C4—C5 | 1.3833 (16) | C11—H11A | 0.9800 |
C4—H4A | 0.9500 | C11—H11B | 0.9800 |
C5—C6 | 1.4036 (15) | C11—H11C | 0.9800 |
C5—H5A | 0.9500 | ||
C1—O1—H1 | 109.5 | N1—C8—C9 | 109.97 (10) |
C2—O2—C10 | 117.43 (9) | N1—C8—H8A | 109.7 |
C7—N1—C8 | 120.11 (11) | C9—C8—H8A | 109.7 |
O1—C1—C6 | 122.32 (10) | N1—C8—H8B | 109.7 |
O1—C1—C2 | 118.03 (10) | C9—C8—H8B | 109.7 |
C6—C1—C2 | 119.65 (10) | H8A—C8—H8B | 108.2 |
O2—C2—C3 | 125.83 (11) | C8—C9—C9i | 111.80 (13) |
O2—C2—C1 | 114.48 (9) | C8—C9—H9A | 109.3 |
C3—C2—C1 | 119.70 (11) | C9i—C9—H9A | 109.3 |
C2—C3—C4 | 120.70 (11) | C8—C9—H9B | 109.3 |
C2—C3—H3A | 119.7 | C9i—C9—H9B | 109.3 |
C4—C3—H3A | 119.7 | H9A—C9—H9B | 107.9 |
C5—C4—C3 | 119.72 (11) | O2—C10—C11 | 106.44 (9) |
C5—C4—H4A | 120.1 | O2—C10—H10A | 110.4 |
C3—C4—H4A | 120.1 | C11—C10—H10A | 110.4 |
C4—C5—C6 | 120.48 (11) | O2—C10—H10B | 110.4 |
C4—C5—H5A | 119.8 | C11—C10—H10B | 110.4 |
C6—C5—H5A | 119.8 | H10A—C10—H10B | 108.6 |
C5—C6—C1 | 119.75 (10) | C10—C11—H11A | 109.5 |
C5—C6—C7 | 120.42 (11) | C10—C11—H11B | 109.5 |
C1—C6—C7 | 119.83 (10) | H11A—C11—H11B | 109.5 |
N1—C7—C6 | 121.38 (11) | C10—C11—H11C | 109.5 |
N1—C7—H7A | 119.3 | H11A—C11—H11C | 109.5 |
C6—C7—H7A | 119.3 | H11B—C11—H11C | 109.5 |
C10—O2—C2—C3 | 6.39 (17) | C4—C5—C6—C7 | −178.73 (11) |
C10—O2—C2—C1 | −173.76 (10) | O1—C1—C6—C5 | −179.51 (11) |
O1—C1—C2—O2 | −0.84 (16) | C2—C1—C6—C5 | 0.09 (17) |
C6—C1—C2—O2 | 179.55 (10) | O1—C1—C6—C7 | −0.25 (17) |
O1—C1—C2—C3 | 179.02 (10) | C2—C1—C6—C7 | 179.35 (10) |
C6—C1—C2—C3 | −0.60 (17) | C8—N1—C7—C6 | −179.99 (10) |
O2—C2—C3—C4 | −179.65 (11) | C5—C6—C7—N1 | −178.57 (11) |
C1—C2—C3—C4 | 0.51 (18) | C1—C6—C7—N1 | 2.18 (18) |
C2—C3—C4—C5 | 0.10 (18) | C7—N1—C8—C9 | 170.13 (11) |
C3—C4—C5—C6 | −0.61 (18) | N1—C8—C9—C9i | 177.44 (12) |
C4—C5—C6—C1 | 0.51 (18) | C2—O2—C10—C11 | 173.37 (10) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.84 | 1.82 | 2.5638 (14) | 147 |
C5—H5A···O1ii | 0.95 | 2.59 | 3.2268 (14) | 125 |
C11—H11B···Cg1iii | 0.98 | 2.96 | 3.5403 (15) | 145 |
Symmetry codes: (ii) x, y−1, z; (iii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C22H28N2O4 |
Mr | 384.46 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.8647 (2), 6.9052 (2), 10.8083 (3) |
α, β, γ (°) | 92.779 (2), 99.908 (2), 101.239 (2) |
V (Å3) | 493.23 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.45 × 0.19 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.961, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8962, 2954, 2157 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.712 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.131, 1.04 |
No. of reflections | 2954 |
No. of parameters | 129 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.27 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.8400 | 1.8200 | 2.5638 (14) | 147.00 |
C5—H5A···O1i | 0.9500 | 2.5900 | 3.2268 (14) | 125.00 |
C11—H11B···Cg1ii | 0.9800 | 2.9600 | 3.5403 (15) | 145.00 |
Symmetry codes: (i) x, y−1, z; (ii) −x+2, −y+1, −z+1. |
Footnotes
‡Additional correspondence author: e-mail: zsrkk@yahoo.com.
Acknowledgements
HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship. HK and AJ thank PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon. Google Scholar
Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31–50. CrossRef CAS Web of Science Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, m1081–m1082. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, m1116–m1117. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The condensation of primary amines with carbonyl compounds yields Schiff base (Casellato & Vigato, 1977) that are still one of the most prevalent mixed-donor ligands in coordination chemistry. In the past two decades, the synthesis, structure and properties of Schiff base complexes have stimulated much interest for their noteworthy contributions in single molecule-based magnetism, materials science, catalysis of many reactions like carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis (Casellato & Vigato 1977). In comparison to the Schiff base metal complexes, only a relatively small number of free Schiff base ligands have been characterized (Calligaris & Randaccio, 1987). As an extension of our work (Fun & Kia 2008a,b) on the structural characterization of Schiff base ligands, the title compound is reported here.
The molecule of the title compound, Fig 1, lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine (C═N) bond. The asymmetric unit of the compound is composed of one-half of the molecule. The imino group is coplanar with the benzene ring. Pairs of intermolecular C—H···O interactions link neighbouring molecules into dimers with a R22(28) ring motif (Bernstein et al., 1995). The crystal structure is stabilized by intermolecular C—H···π interactions [Cg1 is the centroid of the C1–C6 benzene ring] (Table 1).