organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o722-o723

A second tricilinc polymorph of 6,6′-dieth­­oxy-2,2′-[propane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 2 March 2009; accepted 5 March 2009; online 11 March 2009)

The title Schiff base compound, C21H26N2O4, is a second triclinic polymorph of a previously reported room-temperature structure [Jia (2009[Jia, Z. (2009). Acta Cryst. E65, o646.]). Acta Cryst. E65, o646]. Strong intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. Inter­molecular C—H⋯O inter­actions link neighbouring mol­ecules into dimers with an R22(16) ring motif. The mean planes of the two benzene rings are almost perpendicular to each other, making a dihedral angle of 88.24 (5)°. An inter­esting feature of the crystal structure is the intermolecular short C⋯O [3.1878 (13) Å] contact which is shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure is further stabilized by inter­molecular C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.7414 (6) Å]. The structure has a stereogenic centre but the space group is centrosymmetric, so the mol­ecule exists as a racemate.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For information on Schiff base ligands, complexes and their applications, see: Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]). For the other polymorph, see: Jia, (2009[Jia, Z. (2009). Acta Cryst. E65, o646.]). For related structures, see: Li et al. (2005[Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156-o4157.]); Bomfim et al. (2005[Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53-o56.]); Glidewell et al. (2005, 2006[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1-o4.]); Sun et al. (2004[Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707-o1708.]); Fun et al. (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1895-o1896.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O4

  • Mr = 370.44

  • Triclinic, [P \overline 1]

  • a = 8.9729 (2) Å

  • b = 10.7008 (4) Å

  • c = 11.3633 (2) Å

  • α = 107.432 (1)°

  • β = 108.487 (1)°

  • γ = 95.979 (1)°

  • V = 963.03 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.56 × 0.27 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.978

  • 19581 measured reflections

  • 5527 independent reflections

  • 4721 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.136

  • S = 1.05

  • 5527 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.83 2.5752 (13) 146
O2—H2⋯N2 0.84 1.88 2.6178 (13) 147
C9—H9A⋯O1i 0.99 2.49 3.4293 (14) 159
C18—H18b⋯Cg1ii 0.99 2.98 3.8340 (12) 142
C7—H7ACg2iii 0.96 2.72 3.5554 (12) 176
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+2, -z+2. Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures (Calligaris & Randaccio, 1987). Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound have been reported earlier (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2006; Sun et al., 2004; Fun et al., 2008).

The molecule of the title compound (Fig. 1), is a potentially tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are comparable to the earlier room-temperature polymorph which was published previously (Jia, 2009). Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). Intermolecular C—H···O interactions link neighbouring molecules into dimers with a R22(16) ring motif (Bernstein et al., 1995). The mean planes of the two benzene rings are almost perpendicular to each other making a dihedral angle of 88.24 (5)°. The interesting feature of the crystal structure is the short C18···O2 [3.1878 (13) Å, symmetry code: 1 - x, 1 - y, 1 - z] contact which is shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure, is further stabilizd by intermolecular C—H···π and π-π interactions [centroid to centroid distance of 3.7414 (6) Å]. The structure has a stereogenic centre but the space group is centrosymmetric, so the molecule exists as racemate.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For information on Schiff base ligands, complexes and their applications, see: Calligaris & Randaccio (1987). For the other polymorph, see: Jia, (2009). For related structures, see: Li et al. (2005); Bomfim et al. (2005); Glidewell et al. (2005, 2006); Sun et al. (2004); Fun et al. (2008). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 benzene rings, respectively.

Experimental top

The synthetic method has been described earlier (Fun et al., 2008), except that 3-ethoxy salicylaldehyde and 2-methyl-2,3-propanediamine were used as starting materials. Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

H atoms of the hydroxy groups were positioned by a freely rotating O—H bond and constrained with a fixed distance of 0.84 Å. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Dashed lines indicate intramolecular O—H···N hydrogen bonds.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed down the b-axis, showing dimer formation by R22(16) ring motif.
6,6'-diethoxy-2,2'-[propane-1,2-diylbis(nitrilomethylidyne)]diphenol top
Crystal data top
C21H26N2O4Z = 2
Mr = 370.44F(000) = 396
Triclinic, P1Dx = 1.277 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9729 (2) ÅCell parameters from 9912 reflections
b = 10.7008 (4) Åθ = 2.5–33.9°
c = 11.3633 (2) ŵ = 0.09 mm1
α = 107.432 (1)°T = 100 K
β = 108.487 (1)°Block, yellow
γ = 95.979 (1)°0.56 × 0.27 × 0.25 mm
V = 963.03 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5527 independent reflections
Radiation source: fine-focus sealed tube4721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.952, Tmax = 0.978k = 1515
19581 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.2658P]
where P = (Fo2 + 2Fc2)/3
5527 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H26N2O4γ = 95.979 (1)°
Mr = 370.44V = 963.03 (5) Å3
Triclinic, P1Z = 2
a = 8.9729 (2) ÅMo Kα radiation
b = 10.7008 (4) ŵ = 0.09 mm1
c = 11.3633 (2) ÅT = 100 K
α = 107.432 (1)°0.56 × 0.27 × 0.25 mm
β = 108.487 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5527 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4721 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.978Rint = 0.026
19581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.05Δρmax = 0.53 e Å3
5527 reflectionsΔρmin = 0.23 e Å3
249 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45973 (9)0.68396 (7)1.04387 (8)0.02067 (16)
H10.39960.60740.99890.031*
O20.23678 (10)0.61221 (7)0.56112 (7)0.02165 (17)
H20.21990.56170.60180.032*
O30.60593 (9)0.93704 (7)1.19014 (7)0.02040 (16)
O40.30071 (10)0.74269 (7)0.41348 (7)0.02157 (17)
N10.20357 (10)0.51029 (9)0.87252 (9)0.01932 (18)
N20.22170 (11)0.39204 (9)0.61688 (9)0.01981 (18)
C10.37342 (12)0.77863 (10)1.03131 (9)0.01695 (19)
C20.45003 (12)0.91483 (10)1.10727 (10)0.01745 (19)
C30.36454 (13)1.01381 (10)1.09335 (10)0.0202 (2)
H3A0.41651.10551.14210.024*
C40.20267 (13)0.98033 (11)1.00838 (11)0.0230 (2)
H4A0.14561.04921.00030.028*
C50.12610 (12)0.84751 (11)0.93638 (11)0.0218 (2)
H5A0.01580.82490.88010.026*
C60.21104 (12)0.74568 (10)0.94623 (10)0.01782 (19)
C70.13033 (12)0.60568 (10)0.86605 (10)0.0193 (2)
H7A0.02110.58520.80790.023*
C80.11726 (12)0.37212 (10)0.78846 (10)0.0197 (2)
H8A0.00550.37120.73250.024*
C90.20882 (13)0.31383 (10)0.70025 (10)0.0209 (2)
H9A0.31820.31270.75640.025*
H9B0.15250.22000.64320.025*
C100.25539 (12)0.33633 (10)0.51501 (10)0.0195 (2)
H10A0.26240.24480.49360.023*
C110.28343 (12)0.40753 (10)0.43059 (10)0.01798 (19)
C120.32606 (13)0.34087 (11)0.32285 (10)0.0224 (2)
H12A0.33190.24920.30410.027*
C130.35938 (13)0.40746 (11)0.24449 (10)0.0236 (2)
H13A0.38810.36170.17210.028*
C140.35108 (12)0.54260 (11)0.27131 (10)0.0211 (2)
H14A0.37320.58800.21650.025*
C150.31054 (12)0.61053 (10)0.37785 (10)0.01799 (19)
C160.27562 (11)0.54322 (10)0.45865 (9)0.01716 (19)
C170.11095 (14)0.29050 (11)0.87711 (11)0.0251 (2)
H17A0.05830.33210.93760.038*
H17B0.22070.28840.92860.038*
H17C0.04970.19870.82200.038*
C180.68435 (13)1.07531 (10)1.27022 (10)0.0207 (2)
H18A0.62841.11291.33060.025*
H18B0.68181.12951.21290.025*
C190.85652 (13)1.07880 (11)1.34933 (11)0.0250 (2)
H19A0.91171.17141.40710.038*
H19B0.91191.04461.28870.038*
H19C0.85761.02261.40360.038*
C200.32265 (13)0.81235 (11)0.32824 (11)0.0228 (2)
H20A0.24820.76260.23570.027*
H20B0.43450.82130.33050.027*
C210.28754 (16)0.94927 (12)0.37877 (13)0.0284 (2)
H21A0.30391.00110.32420.043*
H21B0.36020.99650.47100.043*
H21C0.17570.93900.37390.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0213 (3)0.0161 (3)0.0204 (4)0.0042 (3)0.0039 (3)0.0045 (3)
O20.0338 (4)0.0181 (3)0.0173 (3)0.0072 (3)0.0154 (3)0.0053 (3)
O30.0215 (3)0.0164 (3)0.0181 (3)0.0023 (3)0.0042 (3)0.0027 (3)
O40.0309 (4)0.0184 (3)0.0173 (3)0.0041 (3)0.0113 (3)0.0066 (3)
N10.0206 (4)0.0199 (4)0.0153 (4)0.0007 (3)0.0065 (3)0.0044 (3)
N20.0234 (4)0.0187 (4)0.0165 (4)0.0036 (3)0.0070 (3)0.0059 (3)
C10.0202 (4)0.0180 (4)0.0139 (4)0.0042 (3)0.0082 (3)0.0053 (3)
C20.0204 (4)0.0183 (4)0.0145 (4)0.0037 (3)0.0085 (3)0.0049 (3)
C30.0257 (5)0.0191 (4)0.0187 (5)0.0064 (4)0.0124 (4)0.0055 (4)
C40.0251 (5)0.0247 (5)0.0240 (5)0.0110 (4)0.0132 (4)0.0090 (4)
C50.0199 (4)0.0271 (5)0.0209 (5)0.0080 (4)0.0096 (4)0.0087 (4)
C60.0191 (4)0.0202 (4)0.0153 (4)0.0039 (3)0.0084 (3)0.0057 (3)
C70.0190 (4)0.0231 (5)0.0150 (4)0.0018 (3)0.0070 (3)0.0058 (4)
C80.0195 (4)0.0194 (4)0.0169 (4)0.0010 (3)0.0047 (3)0.0050 (4)
C90.0264 (5)0.0188 (4)0.0178 (4)0.0055 (4)0.0078 (4)0.0070 (4)
C100.0226 (4)0.0166 (4)0.0164 (4)0.0043 (3)0.0055 (4)0.0038 (3)
C110.0194 (4)0.0181 (4)0.0140 (4)0.0041 (3)0.0052 (3)0.0033 (3)
C120.0276 (5)0.0212 (5)0.0169 (4)0.0079 (4)0.0088 (4)0.0033 (4)
C130.0272 (5)0.0277 (5)0.0155 (4)0.0083 (4)0.0103 (4)0.0037 (4)
C140.0218 (5)0.0262 (5)0.0152 (4)0.0041 (4)0.0075 (4)0.0066 (4)
C150.0184 (4)0.0188 (4)0.0146 (4)0.0026 (3)0.0052 (3)0.0043 (3)
C160.0185 (4)0.0185 (4)0.0125 (4)0.0036 (3)0.0059 (3)0.0029 (3)
C170.0282 (5)0.0245 (5)0.0222 (5)0.0000 (4)0.0093 (4)0.0096 (4)
C180.0247 (5)0.0160 (4)0.0181 (4)0.0019 (3)0.0081 (4)0.0021 (3)
C190.0253 (5)0.0213 (5)0.0222 (5)0.0020 (4)0.0049 (4)0.0042 (4)
C200.0276 (5)0.0240 (5)0.0205 (5)0.0041 (4)0.0116 (4)0.0105 (4)
C210.0377 (6)0.0249 (5)0.0295 (6)0.0082 (4)0.0168 (5)0.0140 (4)
Geometric parameters (Å, º) top
O1—C11.3514 (12)C9—H9B0.9900
O1—H10.8400C10—C111.4542 (15)
O2—C161.3484 (11)C10—H10A0.9500
O2—H20.8400C11—C161.4046 (13)
O3—C21.3643 (12)C11—C121.4087 (14)
O3—C181.4432 (12)C12—C131.3765 (16)
O4—C151.3701 (12)C12—H12A0.9500
O4—C201.4338 (13)C13—C141.4008 (15)
N1—C71.2780 (14)C13—H13A0.9500
N1—C81.4644 (13)C14—C151.3905 (14)
N2—C101.2777 (13)C14—H14A0.9500
N2—C91.4614 (14)C15—C161.4112 (14)
C1—C61.4062 (13)C17—H17A0.9800
C1—C21.4153 (13)C17—H17B0.9800
C2—C31.3885 (14)C17—H17C0.9800
C3—C41.4018 (15)C18—C191.5110 (15)
C3—H3A0.9500C18—H18A0.9900
C4—C51.3802 (15)C18—H18B0.9900
C4—H4A0.9500C19—H19A0.9800
C5—C61.4046 (14)C19—H19B0.9800
C5—H5A0.9500C19—H19C0.9800
C6—C71.4617 (14)C20—C211.5107 (16)
C7—H7A0.9500C20—H20A0.9900
C8—C91.5242 (15)C20—H20B0.9900
C8—C171.5277 (15)C21—H21A0.9800
C8—H8A1.0000C21—H21B0.9800
C9—H9A0.9900C21—H21C0.9800
C1—O1—H1109.5C13—C12—C11120.54 (9)
C16—O2—H2109.5C13—C12—H12A119.7
C2—O3—C18116.03 (8)C11—C12—H12A119.7
C15—O4—C20116.95 (8)C12—C13—C14120.13 (9)
C7—N1—C8118.97 (9)C12—C13—H13A119.9
C10—N2—C9117.69 (9)C14—C13—H13A119.9
O1—C1—C6122.09 (9)C15—C14—C13120.23 (10)
O1—C1—C2118.39 (8)C15—C14—H14A119.9
C6—C1—C2119.52 (9)C13—C14—H14A119.9
O3—C2—C3125.27 (9)O4—C15—C14124.90 (9)
O3—C2—C1115.48 (9)O4—C15—C16114.95 (8)
C3—C2—C1119.25 (9)C14—C15—C16120.15 (9)
C2—C3—C4120.94 (9)O2—C16—C11122.22 (9)
C2—C3—H3A119.5O2—C16—C15118.56 (9)
C4—C3—H3A119.5C11—C16—C15119.22 (9)
C5—C4—C3120.10 (10)C8—C17—H17A109.5
C5—C4—H4A119.9C8—C17—H17B109.5
C3—C4—H4A119.9H17A—C17—H17B109.5
C4—C5—C6120.06 (10)C8—C17—H17C109.5
C4—C5—H5A120.0H17A—C17—H17C109.5
C6—C5—H5A120.0H17B—C17—H17C109.5
C5—C6—C1120.10 (9)O3—C18—C19107.74 (8)
C5—C6—C7119.59 (9)O3—C18—H18A110.2
C1—C6—C7120.30 (9)C19—C18—H18A110.2
N1—C7—C6121.39 (9)O3—C18—H18B110.2
N1—C7—H7A119.3C19—C18—H18B110.2
C6—C7—H7A119.3H18A—C18—H18B108.5
N1—C8—C9108.28 (8)C18—C19—H19A109.5
N1—C8—C17108.78 (8)C18—C19—H19B109.5
C9—C8—C17109.96 (9)H19A—C19—H19B109.5
N1—C8—H8A109.9C18—C19—H19C109.5
C9—C8—H8A109.9H19A—C19—H19C109.5
C17—C8—H8A109.9H19B—C19—H19C109.5
N2—C9—C8111.50 (8)O4—C20—C21106.98 (9)
N2—C9—H9A109.3O4—C20—H20A110.3
C8—C9—H9A109.3C21—C20—H20A110.3
N2—C9—H9B109.3O4—C20—H20B110.3
C8—C9—H9B109.3C21—C20—H20B110.3
H9A—C9—H9B108.0H20A—C20—H20B108.6
N2—C10—C11122.60 (9)C20—C21—H21A109.5
N2—C10—H10A118.7C20—C21—H21B109.5
C11—C10—H10A118.7H21A—C21—H21B109.5
C16—C11—C12119.72 (10)C20—C21—H21C109.5
C16—C11—C10120.87 (9)H21A—C21—H21C109.5
C12—C11—C10119.35 (9)H21B—C21—H21C109.5
C18—O3—C2—C31.11 (15)C17—C8—C9—N2178.20 (8)
C18—O3—C2—C1178.73 (8)C9—N2—C10—C11175.17 (9)
O1—C1—C2—O31.69 (13)N2—C10—C11—C160.46 (15)
C6—C1—C2—O3177.98 (9)N2—C10—C11—C12177.59 (10)
O1—C1—C2—C3178.45 (9)C16—C11—C12—C130.30 (15)
C6—C1—C2—C31.88 (15)C10—C11—C12—C13177.47 (9)
O3—C2—C3—C4177.92 (10)C11—C12—C13—C140.02 (16)
C1—C2—C3—C41.92 (15)C12—C13—C14—C150.56 (16)
C2—C3—C4—C50.39 (17)C20—O4—C15—C144.75 (14)
C3—C4—C5—C61.17 (16)C20—O4—C15—C16175.21 (8)
C4—C5—C6—C11.18 (16)C13—C14—C15—O4179.28 (9)
C4—C5—C6—C7177.88 (9)C13—C14—C15—C160.76 (15)
O1—C1—C6—C5179.99 (9)C12—C11—C16—O2179.44 (9)
C2—C1—C6—C50.35 (15)C10—C11—C16—O22.33 (15)
O1—C1—C6—C70.94 (15)C12—C11—C16—C150.10 (14)
C2—C1—C6—C7179.41 (9)C10—C11—C16—C15177.22 (9)
C8—N1—C7—C6179.15 (9)O4—C15—C16—O20.05 (13)
C5—C6—C7—N1179.86 (10)C14—C15—C16—O2179.99 (9)
C1—C6—C7—N11.08 (15)O4—C15—C16—C11179.61 (8)
C7—N1—C8—C9121.02 (10)C14—C15—C16—C110.43 (14)
C7—N1—C8—C17119.50 (10)C2—O3—C18—C19177.40 (9)
C10—N2—C9—C8161.52 (9)C15—O4—C20—C21173.58 (9)
N1—C8—C9—N259.47 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.832.5752 (13)146
O2—H2···N20.841.882.6178 (13)147
C9—H9A···O1i0.992.493.4293 (14)159
C18—H18b···Cg1ii0.992.983.8340 (12)142
C7—H7A···Cg2iii0.962.723.5554 (12)176
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC21H26N2O4
Mr370.44
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.9729 (2), 10.7008 (4), 11.3633 (2)
α, β, γ (°)107.432 (1), 108.487 (1), 95.979 (1)
V3)963.03 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.56 × 0.27 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.952, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
19581, 5527, 4721
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.05
No. of reflections5527
No. of parameters249
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84001.83002.5752 (13)146.00
O2—H2···N20.84001.88002.6178 (13)147.00
C9—H9A···O1i0.99002.49003.4293 (14)159.00
C18—H18b···Cg1ii0.99002.98003.8340 (12)142.00
C7—H7A···Cg2iii0.96002.72003.5554 (12)176.00
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1; (iii) x+1, y+2, z+2.
 

Footnotes

Additional correspondence author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK and AJ thank PNU for partial financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/ 811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1895–o1896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJia, Z. (2009). Acta Cryst. E65, o646.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o722-o723
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds