metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m403-m404

{6,6′-Dieth­­oxy-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato}nickel(II) monohydrate

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 8 March 2009; accepted 10 March 2009; online 14 March 2009)

In the title complex, [Ni(C23H28N2O4)]·H2O, the NiII ion is coordinated by the N2O2 unit of the tetra­dentate Schiff base ligand in a slightly distorted planar geometry. The asymmetric unit of the title compound comprises one complex mol­ecule and a water mol­ecule of crystallization. The H atoms of the water mol­ecule make bifurcated inter­molecular hydrogen bonds with the O atoms of the phenolate and eth­oxy groups with R12(5) and R12(6) ring motifs, which may, in part, influence the mol­ecular configuration. The dihedral angle between the two benzene rings is 31.43 (5)°. The crystal structure is further stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions, which link neighbouring mol­ecules into one-dimensional extended chains along the a axis. An inter­esting feature of the crystal structure is the short inter­molecular C⋯C [3.3044 (14) Å] contact which is shorter than the sum of the van der Waals radii.

Related literature

For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures see, for example: Clark et al. (1968[Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223-226.], 1969[Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823-829.], 1970[Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396-399.]). For the applications and bioactivities of Schiff base complexes with transition metals, see, for example: Elmali et al. (2000[Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.]); Blower (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]); Granovski et al., (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Li & Chang (1991[Li, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35-39.]); Shahrokhian et al. (2000[Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C23H28N2O4)]·H2O

  • Mr = 473.20

  • Triclinic, [P \overline 1]

  • a = 9.3797 (1) Å

  • b = 10.7570 (1) Å

  • c = 12.8002 (1) Å

  • α = 65.811 (1)°

  • β = 68.87°

  • γ = 78.336 (1)°

  • V = 1096.64 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 100 K

  • 0.36 × 0.19 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.733, Tmax = 0.879

  • 29688 measured reflections

  • 9211 independent reflections

  • 8270 reflections with I > 2σI)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.04

  • 9211 reflections

  • 290 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 1.8523 (6)
Ni1—O2 1.8605 (6)
Ni1—N2 1.8748 (7)
Ni1—N1 1.8766 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O1 0.80 (2) 2.499 (19) 3.0368 (12) 125.8 (16)
O1W—H2W1⋯O3 0.80 (2) 2.20 (2) 2.9805 (12) 164.7 (18)
O1W—H1W1⋯O2 0.77 (2) 2.15 (2) 2.8597 (10) 152 (2)
O1W—H1W1⋯O4 0.77 (2) 2.53 (2) 3.1658 (12) 140 (2)
C8—H8B⋯O1i 0.99 2.42 3.3216 (13) 151
C11—H11A⋯O1Wii 0.95 2.51 3.4242 (13) 161
C5—-H5ACg1i 0.95 2.88 3.3506 (12) 111
C10—-H10BCg1ii 0.99 2.73 3.4406 (11) 129
C22—-H22BCg2iii 0.99 2.87 3.8068 (11) 158
Symmetry codes: (i) -x, -y, -z+2; (ii) -x+1, -y, -z+2; (iii) x, y+1, z. Cg1 and Cg2 are the centroids of the C12–C17 and C1–C6 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of Schiff bases have been studied extensively, and copper(II) and Ni(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1998; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

The NiII ion of the title compound (Fig. 1), shows a sligthly distorted planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with the related structures (Clark et al., 1968, 1969, 1970). The asymmetric unit of the title compound comprises one molecule of complex and a water molecule of crystallization. The hydrogen atoms of the water molecule make bifurcated intermolecular hydrogen bonds with the oxygen atoms of the phenolato- and ethoxy groups with R21(5) and R21(6) ring motifs (Bernstein et al., 1995), which may, in part, influence the molecular configuration. The dihedral angle between the two benzene rings is 31.43 (5)°. The crystal structure is further stabilized by intermolecular C—H···O and C—H···π interactions which link neighbouring molecules into 1-D extended chains along the a axis. The interesting feature of the crystal structure is a short intermolecular C7···C17i [3.3044 (14) Å] contact which is shorter than the sum of the van der Waals radius of a carbon atom. The crystal structure is further stabilized by intermolecular C—H···O and C—H···π interactions (Table 2, Cg1 and Cg2 are the centroids of the C12–C17 and C1–C6 benzene rings) which link neighbouring molecules into 1-D extended chains along the b-axis (Fig. 2).

Related literature top

For bond-length data, see Allen et al. (1987). For related structures see, for example: Clark et al. (1968, 1969, 1970). For the applications and bioactivities of Schiff base complexes with transition metals, see, for example: Elmali et al. (2000); Blower (1998); Granovski et al., (1993); Li & Chang, (1991); Shahrokhian et al., (2000). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 and Cg2 are the centroids of the C12–C17 and C1–C6 benzene rings, respectively.

Experimental top

A chloroform solution (40 ml) of [N,N'-Bis(3-ethoxy-salicylidene)-2, 2-dimethyl-1,3-propanediamin (1 mmol) was added to a ethanol solution (20 mL) of NiCl2.6H2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air, deep-green block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

The water H-atoms were located from the difference Fourier map and freely refined. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.95–99 Å] and refined using a riding approximation model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was used for the methyl groups of the ethoxy substituents.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intermolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the c-axis, showing 1-D extended chains along the a-axis. Intermolecular interactions are drawn as dashed lines.
{6,6'-Diethoxy-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethylidyne)]diphenolato}nickel(II) monohydrate top
Crystal data top
[Ni(C23H28N2O4)]·H2OZ = 2
Mr = 473.20F(000) = 500
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3797 (1) ÅCell parameters from 9961 reflections
b = 10.7570 (1) Åθ = 2.2–39.8°
c = 12.8002 (1) ŵ = 0.92 mm1
α = 65.811 (1)°T = 100 K
β = 68.87°Block, green
γ = 78.336 (1)°0.36 × 0.19 × 0.14 mm
V = 1096.64 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8270 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
θmax = 34.5°, θmin = 1.8°
Tmin = 0.733, Tmax = 0.879h = 1414
29688 measured reflectionsk = 1716
9211 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.3434P]
where P = (Fo2 + 2Fc2)/3
9211 reflections(Δ/σ)max = 0.002
290 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Ni(C23H28N2O4)]·H2Oγ = 78.336 (1)°
Mr = 473.20V = 1096.64 (2) Å3
Triclinic, P1Z = 2
a = 9.3797 (1) ÅMo Kα radiation
b = 10.7570 (1) ŵ = 0.92 mm1
c = 12.8002 (1) ÅT = 100 K
α = 65.811 (1)°0.36 × 0.19 × 0.14 mm
β = 68.87°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8270 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 0.879Rint = 0.023
29688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.51 e Å3
9211 reflectionsΔρmin = 0.54 e Å3
290 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.226401 (12)0.053714 (11)0.977253 (10)0.01153 (3)
O10.23133 (8)0.03160 (7)0.82469 (6)0.01499 (11)
O20.29583 (8)0.12152 (7)0.90220 (6)0.01433 (11)
O30.28411 (8)0.03631 (7)0.59447 (6)0.01764 (12)
O40.30413 (8)0.38398 (7)0.78316 (6)0.01683 (12)
N10.10045 (8)0.20138 (8)1.05666 (7)0.01348 (12)
N20.28140 (8)0.09129 (8)1.11477 (7)0.01317 (12)
C10.17327 (10)0.10785 (9)0.79462 (8)0.01354 (14)
C20.19469 (10)0.07175 (9)0.66932 (8)0.01518 (14)
C30.12695 (11)0.14175 (10)0.63155 (9)0.01851 (16)
H3A0.14170.11570.54810.022*
C40.03610 (12)0.25156 (11)0.71655 (10)0.02041 (17)
H4A0.01220.29790.69050.024*
C50.01751 (11)0.29140 (10)0.83686 (9)0.01839 (16)
H5A0.04200.36660.89360.022*
C60.08636 (10)0.22137 (9)0.87752 (8)0.01478 (14)
C70.05068 (10)0.25756 (9)1.00486 (8)0.01497 (14)
H7A0.01570.32951.05620.018*
C80.02317 (10)0.23401 (9)1.18710 (8)0.01525 (15)
H8A0.05430.30071.21570.018*
H8B0.03160.14991.19960.018*
C90.13208 (10)0.29300 (9)1.26399 (8)0.01469 (14)
C100.29062 (10)0.23683 (9)1.19059 (8)0.01490 (14)
H10A0.34760.24941.24630.018*
H10B0.34840.28951.13870.018*
C110.33388 (10)0.00677 (9)1.13864 (8)0.01485 (14)
H11A0.36860.04251.20720.018*
C120.34334 (10)0.13722 (9)1.06889 (8)0.01425 (14)
C130.38100 (12)0.22038 (10)1.11540 (9)0.01869 (16)
H13A0.40200.18021.19010.022*
C140.38748 (12)0.35894 (10)1.05349 (9)0.01931 (17)
H14A0.41000.41461.08640.023*
C150.36063 (11)0.41821 (10)0.94107 (9)0.01667 (15)
H15A0.36340.51420.89890.020*
C160.33023 (10)0.33740 (9)0.89181 (8)0.01361 (14)
C170.32095 (9)0.19304 (9)0.95500 (8)0.01256 (13)
C180.06211 (12)0.25176 (11)1.37441 (9)0.02151 (18)
H18A0.04910.15201.34790.032*
H18B0.13030.28641.42440.032*
H18C0.03780.29061.42150.032*
C190.15271 (12)0.44884 (10)1.30393 (11)0.02356 (19)
H19A0.22240.48411.35270.035*
H19B0.19580.47411.23280.035*
H19C0.05320.48801.35190.035*
C200.29788 (12)0.09025 (10)0.46874 (8)0.01952 (17)
H20A0.19550.11670.45750.023*
H20B0.34980.02130.43220.023*
C210.39176 (14)0.21404 (11)0.41110 (9)0.02295 (19)
H21A0.39620.25970.32630.034*
H21B0.49570.18510.41640.034*
H21C0.34400.27740.45330.034*
C220.35841 (11)0.51438 (9)0.69639 (9)0.01766 (16)
H22A0.47060.51400.67710.021*
H22B0.30850.58730.72840.021*
C230.31822 (12)0.53790 (11)0.58548 (9)0.02132 (18)
H23A0.35920.62330.52160.032*
H23B0.20660.54390.60470.032*
H23C0.36270.46180.55800.032*
O1W0.47217 (9)0.17324 (9)0.65560 (7)0.02297 (15)
H2W10.422 (2)0.1245 (18)0.6513 (16)0.037 (5)*
H1W10.419 (2)0.187 (2)0.7124 (19)0.051 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01281 (5)0.01131 (5)0.01095 (5)0.00182 (3)0.00487 (4)0.00308 (4)
O10.0199 (3)0.0142 (3)0.0134 (3)0.0042 (2)0.0070 (2)0.0047 (2)
O20.0197 (3)0.0125 (3)0.0130 (3)0.0036 (2)0.0068 (2)0.0040 (2)
O30.0247 (3)0.0172 (3)0.0125 (3)0.0044 (2)0.0076 (2)0.0040 (2)
O40.0215 (3)0.0138 (3)0.0151 (3)0.0060 (2)0.0086 (2)0.0004 (2)
N10.0123 (3)0.0136 (3)0.0136 (3)0.0012 (2)0.0045 (2)0.0036 (2)
N20.0133 (3)0.0135 (3)0.0122 (3)0.0014 (2)0.0051 (2)0.0031 (2)
C10.0141 (3)0.0130 (3)0.0159 (4)0.0007 (3)0.0066 (3)0.0067 (3)
C20.0171 (4)0.0149 (4)0.0162 (4)0.0001 (3)0.0071 (3)0.0071 (3)
C30.0209 (4)0.0207 (4)0.0199 (4)0.0005 (3)0.0089 (3)0.0114 (3)
C40.0200 (4)0.0232 (4)0.0258 (5)0.0024 (3)0.0084 (3)0.0148 (4)
C50.0160 (4)0.0195 (4)0.0229 (4)0.0038 (3)0.0045 (3)0.0110 (3)
C60.0133 (3)0.0153 (4)0.0174 (4)0.0015 (3)0.0045 (3)0.0076 (3)
C70.0125 (3)0.0146 (4)0.0174 (4)0.0020 (3)0.0043 (3)0.0052 (3)
C80.0115 (3)0.0181 (4)0.0134 (3)0.0008 (3)0.0033 (3)0.0037 (3)
C90.0132 (3)0.0137 (3)0.0136 (3)0.0005 (3)0.0043 (3)0.0017 (3)
C100.0132 (3)0.0140 (3)0.0154 (4)0.0001 (3)0.0061 (3)0.0025 (3)
C110.0152 (3)0.0172 (4)0.0125 (3)0.0024 (3)0.0055 (3)0.0041 (3)
C120.0155 (3)0.0164 (4)0.0124 (3)0.0036 (3)0.0049 (3)0.0052 (3)
C130.0228 (4)0.0221 (4)0.0152 (4)0.0062 (3)0.0070 (3)0.0076 (3)
C140.0222 (4)0.0212 (4)0.0189 (4)0.0068 (3)0.0057 (3)0.0096 (3)
C150.0167 (4)0.0163 (4)0.0183 (4)0.0042 (3)0.0044 (3)0.0072 (3)
C160.0126 (3)0.0145 (3)0.0140 (3)0.0025 (3)0.0043 (3)0.0047 (3)
C170.0117 (3)0.0138 (3)0.0130 (3)0.0021 (2)0.0039 (3)0.0052 (3)
C180.0204 (4)0.0266 (5)0.0143 (4)0.0003 (3)0.0051 (3)0.0056 (3)
C190.0205 (4)0.0134 (4)0.0302 (5)0.0011 (3)0.0082 (4)0.0014 (4)
C200.0286 (5)0.0188 (4)0.0137 (4)0.0003 (3)0.0089 (3)0.0069 (3)
C210.0347 (5)0.0193 (4)0.0141 (4)0.0035 (4)0.0074 (4)0.0048 (3)
C220.0174 (4)0.0138 (4)0.0185 (4)0.0039 (3)0.0065 (3)0.0006 (3)
C230.0216 (4)0.0201 (4)0.0175 (4)0.0021 (3)0.0070 (3)0.0013 (3)
O1W0.0231 (3)0.0296 (4)0.0172 (3)0.0094 (3)0.0036 (3)0.0084 (3)
Geometric parameters (Å, º) top
Ni1—O11.8523 (6)C10—H10B0.9900
Ni1—O21.8605 (6)C11—C121.4385 (12)
Ni1—N21.8748 (7)C11—H11A0.9500
Ni1—N11.8766 (8)C12—C171.4079 (12)
O1—C11.3068 (10)C12—C131.4127 (12)
O2—C171.3109 (10)C13—C141.3738 (14)
O3—C21.3692 (11)C13—H13A0.9500
O3—C201.4349 (11)C14—C151.4089 (14)
O4—C161.3675 (11)C14—H14A0.9500
O4—C221.4370 (11)C15—C161.3833 (12)
N1—C71.2994 (11)C15—H15A0.9500
N1—C81.4786 (12)C16—C171.4310 (12)
N2—C111.2960 (11)C18—H18A0.9800
N2—C101.4700 (11)C18—H18B0.9800
C1—C61.4137 (12)C18—H18C0.9800
C1—C21.4327 (12)C19—H19A0.9800
C2—C31.3848 (12)C19—H19B0.9800
C3—C41.4109 (15)C19—H19C0.9800
C3—H3A0.9500C20—C211.5144 (15)
C4—C51.3716 (14)C20—H20A0.9900
C4—H4A0.9500C20—H20B0.9900
C5—C61.4197 (13)C21—H21A0.9800
C5—H5A0.9500C21—H21B0.9800
C6—C71.4352 (13)C21—H21C0.9800
C7—H7A0.9500C22—C231.5081 (14)
C8—C91.5382 (12)C22—H22A0.9900
C8—H8A0.9900C22—H22B0.9900
C8—H8B0.9900C23—H23A0.9800
C9—C191.5320 (13)C23—H23B0.9800
C9—C101.5330 (12)C23—H23C0.9800
C9—C181.5337 (14)O1W—H2W10.798 (19)
C10—H10A0.9900O1W—H1W10.77 (2)
O1—Ni1—O284.55 (3)C12—C11—H11A117.6
O1—Ni1—N2163.37 (3)C17—C12—C13120.81 (8)
O2—Ni1—N293.63 (3)C17—C12—C11120.71 (8)
O1—Ni1—N194.46 (3)C13—C12—C11118.45 (8)
O2—Ni1—N1163.13 (3)C14—C13—C12120.52 (8)
N2—Ni1—N191.99 (3)C14—C13—H13A119.7
C1—O1—Ni1128.09 (6)C12—C13—H13A119.7
C17—O2—Ni1126.23 (6)C13—C14—C15119.80 (8)
C2—O3—C20118.18 (7)C13—C14—H14A120.1
C16—O4—C22117.93 (7)C15—C14—H14A120.1
C7—N1—C8116.61 (7)C16—C15—C14120.37 (9)
C7—N1—Ni1125.70 (6)C16—C15—H15A119.8
C8—N1—Ni1116.04 (6)C14—C15—H15A119.8
C11—N2—C10117.40 (7)O4—C16—C15125.18 (8)
C11—N2—Ni1126.74 (6)O4—C16—C17113.82 (7)
C10—N2—Ni1114.92 (6)C15—C16—C17120.99 (8)
O1—C1—C6124.54 (8)O2—C17—C12124.49 (8)
O1—C1—C2117.97 (8)O2—C17—C16118.10 (7)
C6—C1—C2117.46 (8)C12—C17—C16117.39 (8)
O3—C2—C3124.85 (8)C9—C18—H18A109.5
O3—C2—C1114.03 (8)C9—C18—H18B109.5
C3—C2—C1121.11 (9)H18A—C18—H18B109.5
C2—C3—C4120.24 (9)C9—C18—H18C109.5
C2—C3—H3A119.9H18A—C18—H18C109.5
C4—C3—H3A119.9H18B—C18—H18C109.5
C5—C4—C3120.01 (9)C9—C19—H19A109.5
C5—C4—H4A120.0C9—C19—H19B109.5
C3—C4—H4A120.0H19A—C19—H19B109.5
C4—C5—C6120.67 (9)C9—C19—H19C109.5
C4—C5—H5A119.7H19A—C19—H19C109.5
C6—C5—H5A119.7H19B—C19—H19C109.5
C1—C6—C5120.43 (8)O3—C20—C21106.38 (8)
C1—C6—C7120.59 (8)O3—C20—H20A110.5
C5—C6—C7118.55 (8)C21—C20—H20A110.5
N1—C7—C6126.29 (8)O3—C20—H20B110.5
N1—C7—H7A116.9C21—C20—H20B110.5
C6—C7—H7A116.9H20A—C20—H20B108.6
N1—C8—C9114.08 (7)C20—C21—H21A109.5
N1—C8—H8A108.7C20—C21—H21B109.5
C9—C8—H8A108.7H21A—C21—H21B109.5
N1—C8—H8B108.7C20—C21—H21C109.5
C9—C8—H8B108.7H21A—C21—H21C109.5
H8A—C8—H8B107.6H21B—C21—H21C109.5
C19—C9—C10107.48 (7)O4—C22—C23106.57 (8)
C19—C9—C18110.13 (8)O4—C22—H22A110.4
C10—C9—C18110.50 (8)C23—C22—H22A110.4
C19—C9—C8110.92 (8)O4—C22—H22B110.4
C10—C9—C8110.21 (7)C23—C22—H22B110.4
C18—C9—C8107.62 (7)H22A—C22—H22B108.6
N2—C10—C9112.31 (7)C22—C23—H23A109.5
N2—C10—H10A109.1C22—C23—H23B109.5
C9—C10—H10A109.1H23A—C23—H23B109.5
N2—C10—H10B109.1C22—C23—H23C109.5
C9—C10—H10B109.1H23A—C23—H23C109.5
H10A—C10—H10B107.9H23B—C23—H23C109.5
N2—C11—C12124.73 (8)H2W1—O1W—H1W1100.8 (18)
N2—C11—H11A117.6
O2—Ni1—O1—C1168.23 (8)Ni1—N1—C7—C62.41 (13)
N2—Ni1—O1—C1107.35 (12)C1—C6—C7—N15.56 (14)
N1—Ni1—O1—C15.14 (8)C5—C6—C7—N1178.10 (9)
O1—Ni1—O2—C17177.64 (7)C7—N1—C8—C9124.62 (9)
N2—Ni1—O2—C1718.95 (7)Ni1—N1—C8—C969.17 (9)
N1—Ni1—O2—C1790.23 (12)N1—C8—C9—C1989.00 (9)
O1—Ni1—N1—C72.24 (8)N1—C8—C9—C1029.91 (11)
O2—Ni1—N1—C788.17 (13)N1—C8—C9—C18150.47 (8)
N2—Ni1—N1—C7162.42 (8)C11—N2—C10—C9115.54 (9)
O1—Ni1—N1—C8162.55 (6)Ni1—N2—C10—C974.85 (8)
O2—Ni1—N1—C876.61 (12)C19—C9—C10—N2161.00 (8)
N2—Ni1—N1—C832.80 (6)C18—C9—C10—N278.80 (9)
O1—Ni1—N2—C1188.87 (13)C8—C9—C10—N240.01 (10)
O2—Ni1—N2—C115.77 (8)C10—N2—C11—C12175.62 (8)
N1—Ni1—N2—C11158.31 (8)Ni1—N2—C11—C127.39 (13)
O1—Ni1—N2—C1079.61 (12)N2—C11—C12—C1711.73 (14)
O2—Ni1—N2—C10162.71 (6)N2—C11—C12—C13170.51 (9)
N1—Ni1—N2—C1033.21 (6)C17—C12—C13—C143.93 (14)
Ni1—O1—C1—C63.45 (13)C11—C12—C13—C14178.31 (9)
Ni1—O1—C1—C2178.65 (6)C12—C13—C14—C151.80 (15)
C20—O3—C2—C36.21 (13)C13—C14—C15—C161.05 (15)
C20—O3—C2—C1172.95 (8)C22—O4—C16—C1521.08 (13)
O1—C1—C2—O33.97 (12)C22—O4—C16—C17159.98 (8)
C6—C1—C2—O3177.98 (8)C14—C15—C16—O4179.31 (8)
O1—C1—C2—C3175.22 (8)C14—C15—C16—C171.82 (14)
C6—C1—C2—C32.83 (13)Ni1—O2—C17—C1219.68 (12)
O3—C2—C3—C4179.69 (9)Ni1—O2—C17—C16161.96 (6)
C1—C2—C3—C40.59 (14)C13—C12—C17—O2175.28 (9)
C2—C3—C4—C51.52 (15)C11—C12—C17—O22.42 (13)
C3—C4—C5—C61.30 (15)C13—C12—C17—C163.09 (13)
O1—C1—C6—C5174.88 (8)C11—C12—C17—C16179.21 (8)
C2—C1—C6—C53.04 (13)O4—C16—C17—O22.78 (11)
O1—C1—C6—C72.48 (14)C15—C16—C17—O2178.23 (8)
C2—C1—C6—C7175.44 (8)O4—C16—C17—C12178.75 (8)
C4—C5—C6—C11.04 (14)C15—C16—C17—C120.25 (12)
C4—C5—C6—C7173.59 (9)C2—O3—C20—C21175.61 (8)
C8—N1—C7—C6167.12 (8)C16—O4—C22—C23178.53 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O10.80 (2)2.499 (19)3.0368 (12)125.8 (16)
O1W—H2W1···O30.80 (2)2.20 (2)2.9805 (12)164.7 (18)
O1W—H1W1···O20.77 (2)2.15 (2)2.8597 (10)152 (2)
O1W—H1W1···O40.77 (2)2.53 (2)3.1658 (12)140 (2)
C8—H8B···O1i0.992.423.3216 (13)151
C11—H11A···O1Wii0.952.513.4242 (13)161
C5—-H5A···Cg1i0.952.883.3506 (12)111
C10—-H10B···Cg1ii0.992.733.4406 (11)129
C22—-H22B···Cg2iii0.992.873.8068 (11)158
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C23H28N2O4)]·H2O
Mr473.20
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.3797 (1), 10.7570 (1), 12.8002 (1)
α, β, γ (°)65.811 (1), 68.87, 78.336 (1)
V3)1096.64 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.36 × 0.19 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.733, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
29688, 9211, 8270
Rint0.023
(sin θ/λ)max1)0.797
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.04
No. of reflections9211
No. of parameters290
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.54

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—O11.8523 (6)Ni1—N21.8748 (7)
Ni1—O21.8605 (6)Ni1—N11.8766 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O10.80 (2)2.499 (19)3.0368 (12)125.8 (16)
O1W—H2W1···O30.80 (2)2.20 (2)2.9805 (12)164.7 (18)
O1W—H1W1···O20.77 (2)2.15 (2)2.8597 (10)152 (2)
O1W—H1W1···O40.77 (2)2.53 (2)3.1658 (12)140 (2)
C8—H8B···O1i0.99002.42003.3216 (13)151.00
C11—H11A···O1Wii0.95002.51003.4242 (13)161.00
C5—-H5A···Cg1i0.952.883.3506 (12)111
C10—-H10B···Cg1ii0.992.733.4406 (11)129
C22—-H22B···Cg2iii0.992.873.8068 (11)158
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2; (iii) x, y+1, z.
 

Footnotes

Additional correspondance author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK and AJ thank PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223–226.  CSD CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823–829.  CSD CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396–399.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationLi, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35–39.  CrossRef CAS Web of Science Google Scholar
First citationShahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m403-m404
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds