organic compounds
4,4′,6,6′-Tetramethyl-2,2′-bipyrimidine hexahydrate
aNorthwest Agriculture and Forest University, Yangling 712100, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lyhxxjbm@126.com
In the title compound, C12H14N4·6H2O, the two pyrimidine rings make a dihedral angle of 5.285 (6)°. Intermolecular O—H⋯O hydrogen bonds link the six water molecules, generating edge-fused four-, five- or six-membered ring motifs and forming two-dimensional sheets. The sheets are stabilized by the formation of O—H⋯N hydrogen bonds between the water molecules and the bipyrimidine molecules, resulting in a three-dimensional network.
Related literature
For 2,2′-bipyrimidine and its derivatives, see: Ji et al. (2000); Baumann et al. (1998). For hydrogen-bonded water clusters, see: Buck & Huisken (2000); Lakshminarayanan et al. (2006). For water–water interactions in bulk water or ice, see: Zhang et al. (2005). For bond lengths and angles, see: Berg et al. (2002). For the preparation of the compound by the Ullmann coupling method, see: Vlad & Horvath (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809010095/at2743sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809010095/at2743Isup2.hkl
The title compound was prepared according to the reported Ullmann coupling method (Vlad & Horvath, 2002). Under nitrogen-protected, 4,6-dimethyl-2-iodopyrimidine (351 mg, 1.5 mmol), absolute DMF (2.0 ml) and activated copper powder (508 mg, 8.0 mmol) were placed in a 25 ml flask. The reaction mixture was heated to 358 K with vigorous stirring. After 4 h, 127 mg (2 mmol) of activated copper powder was added to the mixture. After another 3.5 h, the temperature was increased to 398 K and the stirring was continued for 2 h. The suspension was then cooled to 273 K, carefully drowned into a solution of 1.4 g potassium cyanide in 6 ml of 25% aqueous solution of ammonia, and filtered. The solid residue on the filter was extracted with the same amount of cyanide solution and filtered again. The combined filtrates were treated with 58 mg of potassium cyanide and extracted with chloroform (5 times 20 ml). Washed with water and dried. Recrystallization of the crude product from ethyl acetate-petroleum ether gave 81 mg. The crystalline compound was luckily obtained by the reaction of the title compound with NdCl3 under the hydrothermal condition.
All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH), 0.96 Å (methyl CH3), and 0.83 or 0.84 Å (OH), and with Uĩso(H) = 1.2Ueq(C) or 1.5Ueq(methylene C or OH).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. View of the title molecular structure with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms. | |
Fig. 2. View of the two-dimensional sheet constructed by the lattice water molecules (O—H···O hydrogen bonds are represented as dashed lines). |
C12H14N4·6H2O | Z = 2 |
Mr = 322.37 | F(000) = 348 |
Triclinic, P1 | Dx = 1.241 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8622 (19) Å | Cell parameters from 1270 reflections |
b = 11.098 (3) Å | θ = 1.0–1.0° |
c = 11.750 (3) Å | µ = 0.10 mm−1 |
α = 98.233 (3)° | T = 296 K |
β = 91.774 (4)° | Block, colourless |
γ = 102.599 (4)° | 0.41 × 0.31 × 0.21 mm |
V = 862.4 (4) Å3 |
Bruker APEXII CCD area-detector diffractometer | 3196 independent reflections |
Radiation source: fine-focus sealed tube | 2026 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.961, Tmax = 0.980 | k = −13→13 |
6492 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.148 | w = 1/[σ2(Fo2) + (0.074P)2 + 0.0388P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3196 reflections | Δρmax = 0.23 e Å−3 |
204 parameters | Δρmin = −0.15 e Å−3 |
0 restraints | Extinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.045 (6) |
C12H14N4·6H2O | γ = 102.599 (4)° |
Mr = 322.37 | V = 862.4 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.8622 (19) Å | Mo Kα radiation |
b = 11.098 (3) Å | µ = 0.10 mm−1 |
c = 11.750 (3) Å | T = 296 K |
α = 98.233 (3)° | 0.41 × 0.31 × 0.21 mm |
β = 91.774 (4)° |
Bruker APEXII CCD area-detector diffractometer | 3196 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2026 reflections with I > 2σ(I) |
Tmin = 0.961, Tmax = 0.980 | Rint = 0.023 |
6492 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.23 e Å−3 |
3196 reflections | Δρmin = −0.15 e Å−3 |
204 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.0078 (2) | 0.66049 (15) | 0.38126 (13) | 0.0642 (5) | |
H1W | 0.9576 | 0.6341 | 0.3142 | 0.096* | |
H2W | 0.9194 | 0.6501 | 0.4285 | 0.096* | |
O2 | 0.4638 (2) | 0.32153 (14) | 0.82784 (13) | 0.0576 (5) | |
H3W | 0.3978 | 0.2491 | 0.8284 | 0.086* | |
H4W | 0.5591 | 0.3379 | 0.8787 | 0.086* | |
O3 | 0.1279 (3) | 0.42962 (14) | 0.85957 (13) | 0.0620 (5) | |
H5W | 0.0432 | 0.3909 | 0.8985 | 0.093* | |
H6W | 0.2226 | 0.3952 | 0.8493 | 0.093* | |
O4 | 0.6255 (3) | 0.40256 (16) | 0.62491 (14) | 0.0672 (5) | |
H7W | 0.5777 | 0.3790 | 0.6846 | 0.101* | |
H8W | 0.7336 | 0.3788 | 0.6155 | 0.101* | |
O5 | 0.2031 (2) | 0.66114 (14) | 1.01180 (14) | 0.0624 (5) | |
H9W | 0.2119 | 0.7281 | 0.9869 | 0.094* | |
H10W | 0.1897 | 0.6013 | 0.9586 | 0.094* | |
O6 | 0.7043 (3) | 0.63916 (16) | 0.54052 (14) | 0.0705 (5) | |
H11W | 0.6024 | 0.6411 | 0.5015 | 0.106* | |
H12W | 0.6844 | 0.5744 | 0.5710 | 0.106* | |
N1 | 0.2840 (3) | 0.14305 (16) | 0.99505 (14) | 0.0417 (4) | |
N2 | 0.2855 (3) | 0.04691 (15) | 0.77127 (13) | 0.0417 (4) | |
N3 | 0.2336 (2) | −0.15832 (15) | 0.82104 (14) | 0.0403 (4) | |
N4 | 0.2327 (2) | −0.06158 (15) | 1.04606 (14) | 0.0407 (4) | |
C1 | 0.1870 (4) | −0.1038 (2) | 1.24073 (18) | 0.0559 (6) | |
H1A | 0.0530 | −0.1535 | 1.2264 | 0.084* | |
H1B | 0.2033 | −0.0587 | 1.3178 | 0.084* | |
H1C | 0.2801 | −0.1572 | 1.2319 | 0.084* | |
C2 | 0.2256 (3) | −0.0134 (2) | 1.15686 (17) | 0.0414 (5) | |
C3 | 0.2480 (3) | 0.1139 (2) | 1.18979 (17) | 0.0452 (5) | |
H3 | 0.2434 | 0.1471 | 1.2667 | 0.054* | |
C4 | 0.2775 (3) | 0.19090 (19) | 1.10592 (17) | 0.0432 (5) | |
C5 | 0.3011 (4) | 0.3293 (2) | 1.1331 (2) | 0.0632 (7) | |
H5A | 0.4190 | 0.3704 | 1.1002 | 0.095* | |
H5B | 0.3133 | 0.3543 | 1.2152 | 0.095* | |
H5C | 0.1861 | 0.3522 | 1.1015 | 0.095* | |
C6 | 0.2612 (3) | 0.01975 (18) | 0.97125 (16) | 0.0365 (5) | |
C7 | 0.2621 (3) | −0.03399 (18) | 0.84670 (16) | 0.0363 (5) | |
C8 | 0.1946 (4) | −0.3443 (2) | 0.6791 (2) | 0.0617 (7) | |
H8A | 0.3139 | −0.3691 | 0.7017 | 0.093* | |
H8B | 0.1661 | −0.3685 | 0.5975 | 0.093* | |
H8C | 0.0846 | −0.3845 | 0.7189 | 0.093* | |
C9 | 0.2245 (3) | −0.20604 (19) | 0.70895 (17) | 0.0432 (5) | |
C10 | 0.2398 (3) | −0.1290 (2) | 0.62551 (18) | 0.0496 (6) | |
H10 | 0.2286 | −0.1625 | 0.5477 | 0.060* | |
C11 | 0.2719 (3) | −0.00161 (19) | 0.65939 (17) | 0.0449 (5) | |
C12 | 0.2935 (4) | 0.0891 (2) | 0.57525 (19) | 0.0644 (7) | |
H12A | 0.1977 | 0.1402 | 0.5887 | 0.097* | |
H12B | 0.2705 | 0.0442 | 0.4982 | 0.097* | |
H12C | 0.4262 | 0.1413 | 0.5849 | 0.097* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0689 (12) | 0.0708 (11) | 0.0513 (10) | 0.0119 (9) | 0.0050 (8) | 0.0098 (8) |
O2 | 0.0637 (11) | 0.0499 (9) | 0.0589 (10) | 0.0082 (8) | 0.0062 (8) | 0.0138 (8) |
O3 | 0.0686 (11) | 0.0632 (11) | 0.0583 (10) | 0.0187 (8) | 0.0111 (8) | 0.0151 (8) |
O4 | 0.0691 (12) | 0.0825 (12) | 0.0556 (10) | 0.0191 (9) | 0.0074 (8) | 0.0251 (9) |
O5 | 0.0743 (12) | 0.0495 (9) | 0.0617 (10) | 0.0089 (8) | 0.0045 (9) | 0.0101 (8) |
O6 | 0.0698 (12) | 0.0794 (12) | 0.0626 (11) | 0.0096 (9) | 0.0030 (9) | 0.0231 (9) |
N1 | 0.0440 (10) | 0.0440 (10) | 0.0355 (9) | 0.0073 (8) | 0.0036 (8) | 0.0043 (8) |
N2 | 0.0505 (11) | 0.0413 (10) | 0.0332 (9) | 0.0100 (8) | 0.0055 (8) | 0.0052 (8) |
N3 | 0.0430 (10) | 0.0412 (10) | 0.0365 (9) | 0.0090 (8) | 0.0047 (8) | 0.0057 (8) |
N4 | 0.0407 (10) | 0.0472 (10) | 0.0349 (9) | 0.0105 (8) | 0.0049 (7) | 0.0076 (8) |
C1 | 0.0706 (16) | 0.0596 (15) | 0.0415 (13) | 0.0177 (12) | 0.0136 (11) | 0.0141 (11) |
C2 | 0.0357 (11) | 0.0537 (13) | 0.0351 (11) | 0.0096 (10) | 0.0038 (9) | 0.0082 (9) |
C3 | 0.0448 (13) | 0.0571 (14) | 0.0328 (11) | 0.0124 (10) | 0.0058 (9) | 0.0023 (10) |
C4 | 0.0422 (12) | 0.0469 (12) | 0.0387 (12) | 0.0091 (10) | 0.0017 (9) | 0.0021 (9) |
C5 | 0.0879 (19) | 0.0528 (15) | 0.0461 (14) | 0.0161 (13) | 0.0047 (13) | −0.0024 (11) |
C6 | 0.0326 (11) | 0.0438 (12) | 0.0330 (11) | 0.0083 (9) | 0.0031 (8) | 0.0060 (9) |
C7 | 0.0317 (10) | 0.0417 (11) | 0.0356 (11) | 0.0079 (9) | 0.0035 (8) | 0.0067 (9) |
C8 | 0.0899 (19) | 0.0485 (14) | 0.0475 (14) | 0.0197 (13) | 0.0058 (13) | 0.0033 (11) |
C9 | 0.0462 (13) | 0.0427 (12) | 0.0397 (12) | 0.0088 (9) | 0.0047 (9) | 0.0044 (9) |
C10 | 0.0640 (15) | 0.0482 (13) | 0.0322 (11) | 0.0072 (11) | 0.0025 (10) | 0.0002 (10) |
C11 | 0.0523 (13) | 0.0462 (13) | 0.0361 (11) | 0.0098 (10) | 0.0050 (10) | 0.0078 (9) |
C12 | 0.103 (2) | 0.0525 (15) | 0.0378 (13) | 0.0139 (14) | 0.0069 (13) | 0.0121 (11) |
O1—H1W | 0.8358 | C1—H1B | 0.9600 |
O1—H2W | 0.8355 | C1—H1C | 0.9600 |
O2—H3W | 0.8334 | C2—C3 | 1.383 (3) |
O2—H4W | 0.8431 | C3—C4 | 1.386 (3) |
O3—H5W | 0.8342 | C3—H3 | 0.9300 |
O3—H6W | 0.8269 | C4—C5 | 1.496 (3) |
O4—H7W | 0.8351 | C5—H5A | 0.9600 |
O4—H8W | 0.8443 | C5—H5B | 0.9600 |
O5—H9W | 0.8278 | C5—H5C | 0.9600 |
O5—H10W | 0.8314 | C6—C7 | 1.500 (3) |
O6—H11W | 0.8302 | C8—C9 | 1.492 (3) |
O6—H12W | 0.8353 | C8—H8A | 0.9600 |
N1—C6 | 1.330 (2) | C8—H8B | 0.9600 |
N1—C4 | 1.340 (3) | C8—H8C | 0.9600 |
N2—C7 | 1.338 (2) | C9—C10 | 1.383 (3) |
N2—C11 | 1.340 (3) | C10—C11 | 1.379 (3) |
N3—C7 | 1.339 (2) | C10—H10 | 0.9300 |
N3—C9 | 1.341 (3) | C11—C12 | 1.498 (3) |
N4—C6 | 1.337 (2) | C12—H12A | 0.9600 |
N4—C2 | 1.341 (3) | C12—H12B | 0.9600 |
C1—C2 | 1.493 (3) | C12—H12C | 0.9600 |
C1—H1A | 0.9600 | ||
H1W—O1—H2W | 110.2 | H5A—C5—H5C | 109.5 |
H3W—O2—H4W | 109.0 | H5B—C5—H5C | 109.5 |
H5W—O3—H6W | 111.2 | N1—C6—N4 | 126.97 (18) |
H7W—O4—H8W | 108.4 | N1—C6—C7 | 116.44 (17) |
H9W—O5—H10W | 111.6 | N4—C6—C7 | 116.57 (18) |
H11W—O6—H12W | 109.9 | N3—C7—N2 | 126.13 (18) |
C6—N1—C4 | 116.54 (17) | N3—C7—C6 | 117.13 (17) |
C7—N2—C11 | 116.80 (17) | N2—C7—C6 | 116.70 (17) |
C7—N3—C9 | 116.70 (17) | C9—C8—H8A | 109.5 |
C6—N4—C2 | 116.31 (18) | C9—C8—H8B | 109.5 |
C2—C1—H1A | 109.5 | H8A—C8—H8B | 109.5 |
C2—C1—H1B | 109.5 | C9—C8—H8C | 109.5 |
H1A—C1—H1B | 109.5 | H8A—C8—H8C | 109.5 |
C2—C1—H1C | 109.5 | H8B—C8—H8C | 109.5 |
H1A—C1—H1C | 109.5 | N3—C9—C10 | 120.62 (19) |
H1B—C1—H1C | 109.5 | N3—C9—C8 | 117.30 (18) |
N4—C2—C3 | 120.80 (18) | C10—C9—C8 | 122.07 (19) |
N4—C2—C1 | 116.81 (19) | C11—C10—C9 | 118.96 (19) |
C3—C2—C1 | 122.37 (19) | C11—C10—H10 | 120.5 |
C2—C3—C4 | 118.69 (19) | C9—C10—H10 | 120.5 |
C2—C3—H3 | 120.7 | N2—C11—C10 | 120.71 (18) |
C4—C3—H3 | 120.7 | N2—C11—C12 | 116.59 (19) |
N1—C4—C3 | 120.68 (19) | C10—C11—C12 | 122.71 (19) |
N1—C4—C5 | 116.81 (19) | C11—C12—H12A | 109.5 |
C3—C4—C5 | 122.50 (19) | C11—C12—H12B | 109.5 |
C4—C5—H5A | 109.5 | H12A—C12—H12B | 109.5 |
C4—C5—H5B | 109.5 | C11—C12—H12C | 109.5 |
H5A—C5—H5B | 109.5 | H12A—C12—H12C | 109.5 |
C4—C5—H5C | 109.5 | H12B—C12—H12C | 109.5 |
C6—N4—C2—C3 | −0.3 (3) | C11—N2—C7—N3 | 2.5 (3) |
C6—N4—C2—C1 | 178.04 (18) | C11—N2—C7—C6 | −175.32 (18) |
N4—C2—C3—C4 | 0.2 (3) | N1—C6—C7—N3 | −178.13 (16) |
C1—C2—C3—C4 | −178.1 (2) | N4—C6—C7—N3 | 0.3 (3) |
C6—N1—C4—C3 | −0.1 (3) | N1—C6—C7—N2 | −0.1 (3) |
C6—N1—C4—C5 | −179.45 (19) | N4—C6—C7—N2 | 178.33 (16) |
C2—C3—C4—N1 | 0.1 (3) | C7—N3—C9—C10 | −1.4 (3) |
C2—C3—C4—C5 | 179.3 (2) | C7—N3—C9—C8 | 179.46 (19) |
C4—N1—C6—N4 | 0.0 (3) | N3—C9—C10—C11 | 2.3 (3) |
C4—N1—C6—C7 | 178.16 (17) | C8—C9—C10—C11 | −178.5 (2) |
C2—N4—C6—N1 | 0.3 (3) | C7—N2—C11—C10 | −1.4 (3) |
C2—N4—C6—C7 | −177.94 (17) | C7—N2—C11—C12 | 178.63 (19) |
C9—N3—C7—N2 | −1.1 (3) | C9—C10—C11—N2 | −0.9 (3) |
C9—N3—C7—C6 | 176.71 (17) | C9—C10—C11—C12 | 179.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···O3i | 0.84 | 2.08 | 2.914 (2) | 172 |
O1—H2W···O6 | 0.84 | 2.00 | 2.837 (2) | 175 |
O2—H3W···N2 | 0.83 | 2.20 | 2.995 (2) | 158 |
O2—H3W···N1 | 0.83 | 2.49 | 3.083 (2) | 129 |
O2—H4W···O5ii | 0.84 | 2.04 | 2.872 (2) | 167 |
O3—H5W···O5iii | 0.83 | 2.04 | 2.847 (2) | 163 |
O3—H6W···O2 | 0.83 | 2.01 | 2.832 (2) | 177 |
O4—H7W···O2 | 0.84 | 2.01 | 2.841 (2) | 180 |
O4—H8W···O1iv | 0.84 | 1.92 | 2.755 (2) | 171 |
O5—H9W···N4v | 0.83 | 2.31 | 3.007 (2) | 142 |
O5—H9W···N3v | 0.83 | 2.46 | 3.196 (2) | 149 |
O5—H10W···O3 | 0.83 | 2.04 | 2.849 (2) | 166 |
O6—H11W···O4i | 0.83 | 2.05 | 2.851 (2) | 162 |
O6—H12W···O4 | 0.84 | 2.06 | 2.886 (2) | 173 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x, −y+1, −z+2; (iv) −x+2, −y+1, −z+1; (v) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C12H14N4·6H2O |
Mr | 322.37 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.8622 (19), 11.098 (3), 11.750 (3) |
α, β, γ (°) | 98.233 (3), 91.774 (4), 102.599 (4) |
V (Å3) | 862.4 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.41 × 0.31 × 0.21 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.961, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6492, 3196, 2026 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.148, 1.04 |
No. of reflections | 3196 |
No. of parameters | 204 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.15 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···O3i | 0.84 | 2.08 | 2.914 (2) | 172.2 |
O1—H2W···O6 | 0.84 | 2.00 | 2.837 (2) | 175.3 |
O2—H3W···N2 | 0.83 | 2.20 | 2.995 (2) | 158.3 |
O2—H3W···N1 | 0.83 | 2.49 | 3.083 (2) | 129.4 |
O2—H4W···O5ii | 0.84 | 2.04 | 2.872 (2) | 167.4 |
O3—H5W···O5iii | 0.83 | 2.04 | 2.847 (2) | 163.0 |
O3—H6W···O2 | 0.83 | 2.01 | 2.832 (2) | 176.6 |
O4—H7W···O2 | 0.84 | 2.01 | 2.841 (2) | 179.7 |
O4—H8W···O1iv | 0.84 | 1.92 | 2.755 (2) | 170.7 |
O5—H9W···N4v | 0.83 | 2.31 | 3.007 (2) | 142.2 |
O5—H9W···N3v | 0.83 | 2.46 | 3.196 (2) | 148.7 |
O5—H10W···O3 | 0.83 | 2.04 | 2.849 (2) | 165.5 |
O6—H11W···O4i | 0.83 | 2.05 | 2.851 (2) | 161.7 |
O6—H12W···O4 | 0.84 | 2.06 | 2.886 (2) | 172.7 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x, −y+1, −z+2; (iv) −x+2, −y+1, −z+1; (v) x, y+1, z. |
Footnotes
‡Current address: College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471022 People's Republic of China.
Acknowledgements
We are grateful to the National Natural Science Foundation of China (grant No. 20872057) and the Natural Science Foundation of Henan Province (No. 082300420040) for financial support.
References
Baumann, F., Stange, A. & Kaim, W. (1998). Inorg. Chem. Commun. 1, 305–308. Web of Science CSD CrossRef CAS Google Scholar
Berg, D. J., Bencella, J. M. & Andersen, P. A. (2002). Organometallics, 21, 4622–4631. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buck, U. & Huisken, F. (2000). Chem Rev. 100, 3863–3890. Web of Science CrossRef PubMed CAS Google Scholar
Ji, Z., Huang, S. D. & Guadalupe, A. R. (2000). Inorg. Chim. Acta, 305, 127–134. Web of Science CSD CrossRef CAS Google Scholar
Lakshminarayanan, P. S., Suresh, E. & Ghosh, P. (2006). Angew. Chem. Int. Ed. 45, 3807–3811. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vlad, G. & Horvath, I. T. (2002). J. Org. Chem. 67, 6550–6552. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, X. M., Fang, R. Q. & Wu, H. S. (2005). Cryst. Growth Des. 5, 1335–1337. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,2'-Bipyrimidine and its derivatives have been used as the ligands in inorganic and organometallic chemistry (Ji et al. 2000; Baumann et al. 1998). On the other hand, the investigations of hydrogen-bonded water clusters in compound have recently attracted a great deal of interest (Buck et al. 2000; Lakshminarayanan et al. 2006). These studies can provided clues to understand the nature of water-water interactions in bulk water or ice (Zhang et al. 2005). In view of the importance of these compound, we herein report the synthesis and crystal structure of the title compound.
The molecule of the title compound (Fig. 1.), is built up form one pyrimidine ring connected to the other pyrimidine ring through the 2 and 2' carbon atoms, in which the bond lengths and angles are within ranges as reported by Berg et al. (2002). In the crystal structure, the four substituent methyl groups lie in the corresponding pyrimidine ring plane, respectively. And, the dihedral angle between the two pyrimidine rings is 5.285 (6)°. It must be pointed out that the striking feature of the title compound is the interesting arrangement of the six water molecules, which connected each other by the formation of intermolecular O—H···O hydrogen bonds, generating the edge-fused four-, five-, or six-membered ring motifs, to form a two-dimensional sheet (Fig.2.). Interestingly, every water O atom in the sheet is tri-coordination, which unlike the water at the surface of ice or in liquid water shows four coordination. Furthermore, the sheets are anchored in four nitrogen atoms of the titlelte molecule by the formation of O—H···N hydrogen bonds, resulting in a three-dimensional network, in which these hydrogen bonding interactions, with O—H···O hydrogen bonds may be effective in the stabilization of the crystal packing. Detail hydrogen bonds are given in Table 1.