organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o848-o849

4,4′,6,6′-Tetra­methyl-2,2′-bi­pyrimidine hexa­hydrate

aNorthwest Agriculture and Forest University, Yangling 712100, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lyhxxjbm@126.com

(Received 15 March 2009; accepted 19 March 2009; online 25 March 2009)

In the title compound, C12H14N4·6H2O, the two pyrimidine rings make a dihedral angle of 5.285 (6)°. Inter­molecular O—H⋯O hydrogen bonds link the six water mol­ecules, generating edge-fused four-, five- or six-membered ring motifs and forming two-dimensional sheets. The sheets are stabilized by the formation of O—H⋯N hydrogen bonds between the water mol­ecules and the bipyrimidine mol­ecules, resulting in a three-dimensional network.

Related literature

For 2,2′-bipyrimidine and its derivatives, see: Ji et al. (2000[Ji, Z., Huang, S. D. & Guadalupe, A. R. (2000). Inorg. Chim. Acta, 305, 127-134.]); Baumann et al. (1998[Baumann, F., Stange, A. & Kaim, W. (1998). Inorg. Chem. Commun. 1, 305-308.]). For hydrogen-bonded water clusters, see: Buck & Huisken (2000[Buck, U. & Huisken, F. (2000). Chem Rev. 100, 3863-3890.]); Lakshminarayanan et al. (2006[Lakshminarayanan, P. S., Suresh, E. & Ghosh, P. (2006). Angew. Chem. Int. Ed. 45, 3807-3811.]). For water–water inter­actions in bulk water or ice, see: Zhang et al. (2005[Zhang, X. M., Fang, R. Q. & Wu, H. S. (2005). Cryst. Growth Des. 5, 1335-1337.]). For bond lengths and angles, see: Berg et al. (2002[Berg, D. J., Bencella, J. M. & Andersen, P. A. (2002). Organometallics, 21, 4622-4631.]). For the preparation of the compound by the Ullmann coupling method, see: Vlad & Horvath (2002[Vlad, G. & Horvath, I. T. (2002). J. Org. Chem. 67, 6550-6552.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N4·6H2O

  • Mr = 322.37

  • Triclinic, [P \overline 1]

  • a = 6.8622 (19) Å

  • b = 11.098 (3) Å

  • c = 11.750 (3) Å

  • α = 98.233 (3)°

  • β = 91.774 (4)°

  • γ = 102.599 (4)°

  • V = 862.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.41 × 0.31 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.980

  • 6492 measured reflections

  • 3196 independent reflections

  • 2026 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.148

  • S = 1.04

  • 3196 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O3i 0.84 2.08 2.914 (2) 172
O1—H2W⋯O6 0.84 2.00 2.837 (2) 175
O2—H3W⋯N2 0.83 2.20 2.995 (2) 158
O2—H3W⋯N1 0.83 2.49 3.083 (2) 129
O2—H4W⋯O5ii 0.84 2.04 2.872 (2) 167
O3—H5W⋯O5iii 0.83 2.04 2.847 (2) 163
O3—H6W⋯O2 0.83 2.01 2.832 (2) 177
O4—H7W⋯O2 0.84 2.01 2.841 (2) 180
O4—H8W⋯O1iv 0.84 1.92 2.755 (2) 171
O5—H9W⋯N4v 0.83 2.31 3.007 (2) 142
O5—H9W⋯N3v 0.83 2.46 3.196 (2) 149
O5—H10W⋯O3 0.83 2.04 2.849 (2) 166
O6—H11W⋯O4i 0.83 2.05 2.851 (2) 162
O6—H12W⋯O4 0.84 2.06 2.886 (2) 173
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) -x, -y+1, -z+2; (iv) -x+2, -y+1, -z+1; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,2'-Bipyrimidine and its derivatives have been used as the ligands in inorganic and organometallic chemistry (Ji et al. 2000; Baumann et al. 1998). On the other hand, the investigations of hydrogen-bonded water clusters in compound have recently attracted a great deal of interest (Buck et al. 2000; Lakshminarayanan et al. 2006). These studies can provided clues to understand the nature of water-water interactions in bulk water or ice (Zhang et al. 2005). In view of the importance of these compound, we herein report the synthesis and crystal structure of the title compound.

The molecule of the title compound (Fig. 1.), is built up form one pyrimidine ring connected to the other pyrimidine ring through the 2 and 2' carbon atoms, in which the bond lengths and angles are within ranges as reported by Berg et al. (2002). In the crystal structure, the four substituent methyl groups lie in the corresponding pyrimidine ring plane, respectively. And, the dihedral angle between the two pyrimidine rings is 5.285 (6)°. It must be pointed out that the striking feature of the title compound is the interesting arrangement of the six water molecules, which connected each other by the formation of intermolecular O—H···O hydrogen bonds, generating the edge-fused four-, five-, or six-membered ring motifs, to form a two-dimensional sheet (Fig.2.). Interestingly, every water O atom in the sheet is tri-coordination, which unlike the water at the surface of ice or in liquid water shows four coordination. Furthermore, the sheets are anchored in four nitrogen atoms of the titlelte molecule by the formation of O—H···N hydrogen bonds, resulting in a three-dimensional network, in which these hydrogen bonding interactions, with O—H···O hydrogen bonds may be effective in the stabilization of the crystal packing. Detail hydrogen bonds are given in Table 1.

Related literature top

For 2,2'-bipyrimidine and its derivatives, see: Ji et al. (2000); Baumann et al. (1998). For hydrogen-bonded waterclusters, see: Buck & Huisken (2000); Lakshminarayanan et al. (2006). For water–water interactions in bulk water or ice, see: Zhang et al. (2005). For bond lengths and angles, see: Berg et al. (2002). For the preparation of the compound by the Ullmann coupling method, see: Vlad & Horvath (2002).

Experimental top

The title compound was prepared according to the reported Ullmann coupling method (Vlad & Horvath, 2002). Under nitrogen-protected, 4,6-dimethyl-2-iodopyrimidine (351 mg, 1.5 mmol), absolute DMF (2.0 ml) and activated copper powder (508 mg, 8.0 mmol) were placed in a 25 ml flask. The reaction mixture was heated to 358 K with vigorous stirring. After 4 h, 127 mg (2 mmol) of activated copper powder was added to the mixture. After another 3.5 h, the temperature was increased to 398 K and the stirring was continued for 2 h. The suspension was then cooled to 273 K, carefully drowned into a solution of 1.4 g potassium cyanide in 6 ml of 25% aqueous solution of ammonia, and filtered. The solid residue on the filter was extracted with the same amount of cyanide solution and filtered again. The combined filtrates were treated with 58 mg of potassium cyanide and extracted with chloroform (5 times 20 ml). Washed with water and dried. Recrystallization of the crude product from ethyl acetate-petroleum ether gave 81 mg. The crystalline compound was luckily obtained by the reaction of the title compound with NdCl3 under the hydrothermal condition.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH), 0.96 Å (methyl CH3), and 0.83 or 0.84 Å (OH), and with Uĩso(H) = 1.2Ueq(C) or 1.5Ueq(methylene C or OH).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecular structure with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. View of the two-dimensional sheet constructed by the lattice water molecules (O—H···O hydrogen bonds are represented as dashed lines).
4,4',6,6'-Tetramethyl-2,2'-bipyrimidine hexahydrate top
Crystal data top
C12H14N4·6H2OZ = 2
Mr = 322.37F(000) = 348
Triclinic, P1Dx = 1.241 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8622 (19) ÅCell parameters from 1270 reflections
b = 11.098 (3) Åθ = 1.0–1.0°
c = 11.750 (3) ŵ = 0.10 mm1
α = 98.233 (3)°T = 296 K
β = 91.774 (4)°Block, colourless
γ = 102.599 (4)°0.41 × 0.31 × 0.21 mm
V = 862.4 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3196 independent reflections
Radiation source: fine-focus sealed tube2026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.961, Tmax = 0.980k = 1313
6492 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.074P)2 + 0.0388P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3196 reflectionsΔρmax = 0.23 e Å3
204 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (6)
Crystal data top
C12H14N4·6H2Oγ = 102.599 (4)°
Mr = 322.37V = 862.4 (4) Å3
Triclinic, P1Z = 2
a = 6.8622 (19) ÅMo Kα radiation
b = 11.098 (3) ŵ = 0.10 mm1
c = 11.750 (3) ÅT = 296 K
α = 98.233 (3)°0.41 × 0.31 × 0.21 mm
β = 91.774 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3196 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2026 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.980Rint = 0.023
6492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
3196 reflectionsΔρmin = 0.15 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0078 (2)0.66049 (15)0.38126 (13)0.0642 (5)
H1W0.95760.63410.31420.096*
H2W0.91940.65010.42850.096*
O20.4638 (2)0.32153 (14)0.82784 (13)0.0576 (5)
H3W0.39780.24910.82840.086*
H4W0.55910.33790.87870.086*
O30.1279 (3)0.42962 (14)0.85957 (13)0.0620 (5)
H5W0.04320.39090.89850.093*
H6W0.22260.39520.84930.093*
O40.6255 (3)0.40256 (16)0.62491 (14)0.0672 (5)
H7W0.57770.37900.68460.101*
H8W0.73360.37880.61550.101*
O50.2031 (2)0.66114 (14)1.01180 (14)0.0624 (5)
H9W0.21190.72810.98690.094*
H10W0.18970.60130.95860.094*
O60.7043 (3)0.63916 (16)0.54052 (14)0.0705 (5)
H11W0.60240.64110.50150.106*
H12W0.68440.57440.57100.106*
N10.2840 (3)0.14305 (16)0.99505 (14)0.0417 (4)
N20.2855 (3)0.04691 (15)0.77127 (13)0.0417 (4)
N30.2336 (2)0.15832 (15)0.82104 (14)0.0403 (4)
N40.2327 (2)0.06158 (15)1.04606 (14)0.0407 (4)
C10.1870 (4)0.1038 (2)1.24073 (18)0.0559 (6)
H1A0.05300.15351.22640.084*
H1B0.20330.05871.31780.084*
H1C0.28010.15721.23190.084*
C20.2256 (3)0.0134 (2)1.15686 (17)0.0414 (5)
C30.2480 (3)0.1139 (2)1.18979 (17)0.0452 (5)
H30.24340.14711.26670.054*
C40.2775 (3)0.19090 (19)1.10592 (17)0.0432 (5)
C50.3011 (4)0.3293 (2)1.1331 (2)0.0632 (7)
H5A0.41900.37041.10020.095*
H5B0.31330.35431.21520.095*
H5C0.18610.35221.10150.095*
C60.2612 (3)0.01975 (18)0.97125 (16)0.0365 (5)
C70.2621 (3)0.03399 (18)0.84670 (16)0.0363 (5)
C80.1946 (4)0.3443 (2)0.6791 (2)0.0617 (7)
H8A0.31390.36910.70170.093*
H8B0.16610.36850.59750.093*
H8C0.08460.38450.71890.093*
C90.2245 (3)0.20604 (19)0.70895 (17)0.0432 (5)
C100.2398 (3)0.1290 (2)0.62551 (18)0.0496 (6)
H100.22860.16250.54770.060*
C110.2719 (3)0.00161 (19)0.65939 (17)0.0449 (5)
C120.2935 (4)0.0891 (2)0.57525 (19)0.0644 (7)
H12A0.19770.14020.58870.097*
H12B0.27050.04420.49820.097*
H12C0.42620.14130.58490.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0689 (12)0.0708 (11)0.0513 (10)0.0119 (9)0.0050 (8)0.0098 (8)
O20.0637 (11)0.0499 (9)0.0589 (10)0.0082 (8)0.0062 (8)0.0138 (8)
O30.0686 (11)0.0632 (11)0.0583 (10)0.0187 (8)0.0111 (8)0.0151 (8)
O40.0691 (12)0.0825 (12)0.0556 (10)0.0191 (9)0.0074 (8)0.0251 (9)
O50.0743 (12)0.0495 (9)0.0617 (10)0.0089 (8)0.0045 (9)0.0101 (8)
O60.0698 (12)0.0794 (12)0.0626 (11)0.0096 (9)0.0030 (9)0.0231 (9)
N10.0440 (10)0.0440 (10)0.0355 (9)0.0073 (8)0.0036 (8)0.0043 (8)
N20.0505 (11)0.0413 (10)0.0332 (9)0.0100 (8)0.0055 (8)0.0052 (8)
N30.0430 (10)0.0412 (10)0.0365 (9)0.0090 (8)0.0047 (8)0.0057 (8)
N40.0407 (10)0.0472 (10)0.0349 (9)0.0105 (8)0.0049 (7)0.0076 (8)
C10.0706 (16)0.0596 (15)0.0415 (13)0.0177 (12)0.0136 (11)0.0141 (11)
C20.0357 (11)0.0537 (13)0.0351 (11)0.0096 (10)0.0038 (9)0.0082 (9)
C30.0448 (13)0.0571 (14)0.0328 (11)0.0124 (10)0.0058 (9)0.0023 (10)
C40.0422 (12)0.0469 (12)0.0387 (12)0.0091 (10)0.0017 (9)0.0021 (9)
C50.0879 (19)0.0528 (15)0.0461 (14)0.0161 (13)0.0047 (13)0.0024 (11)
C60.0326 (11)0.0438 (12)0.0330 (11)0.0083 (9)0.0031 (8)0.0060 (9)
C70.0317 (10)0.0417 (11)0.0356 (11)0.0079 (9)0.0035 (8)0.0067 (9)
C80.0899 (19)0.0485 (14)0.0475 (14)0.0197 (13)0.0058 (13)0.0033 (11)
C90.0462 (13)0.0427 (12)0.0397 (12)0.0088 (9)0.0047 (9)0.0044 (9)
C100.0640 (15)0.0482 (13)0.0322 (11)0.0072 (11)0.0025 (10)0.0002 (10)
C110.0523 (13)0.0462 (13)0.0361 (11)0.0098 (10)0.0050 (10)0.0078 (9)
C120.103 (2)0.0525 (15)0.0378 (13)0.0139 (14)0.0069 (13)0.0121 (11)
Geometric parameters (Å, º) top
O1—H1W0.8358C1—H1B0.9600
O1—H2W0.8355C1—H1C0.9600
O2—H3W0.8334C2—C31.383 (3)
O2—H4W0.8431C3—C41.386 (3)
O3—H5W0.8342C3—H30.9300
O3—H6W0.8269C4—C51.496 (3)
O4—H7W0.8351C5—H5A0.9600
O4—H8W0.8443C5—H5B0.9600
O5—H9W0.8278C5—H5C0.9600
O5—H10W0.8314C6—C71.500 (3)
O6—H11W0.8302C8—C91.492 (3)
O6—H12W0.8353C8—H8A0.9600
N1—C61.330 (2)C8—H8B0.9600
N1—C41.340 (3)C8—H8C0.9600
N2—C71.338 (2)C9—C101.383 (3)
N2—C111.340 (3)C10—C111.379 (3)
N3—C71.339 (2)C10—H100.9300
N3—C91.341 (3)C11—C121.498 (3)
N4—C61.337 (2)C12—H12A0.9600
N4—C21.341 (3)C12—H12B0.9600
C1—C21.493 (3)C12—H12C0.9600
C1—H1A0.9600
H1W—O1—H2W110.2H5A—C5—H5C109.5
H3W—O2—H4W109.0H5B—C5—H5C109.5
H5W—O3—H6W111.2N1—C6—N4126.97 (18)
H7W—O4—H8W108.4N1—C6—C7116.44 (17)
H9W—O5—H10W111.6N4—C6—C7116.57 (18)
H11W—O6—H12W109.9N3—C7—N2126.13 (18)
C6—N1—C4116.54 (17)N3—C7—C6117.13 (17)
C7—N2—C11116.80 (17)N2—C7—C6116.70 (17)
C7—N3—C9116.70 (17)C9—C8—H8A109.5
C6—N4—C2116.31 (18)C9—C8—H8B109.5
C2—C1—H1A109.5H8A—C8—H8B109.5
C2—C1—H1B109.5C9—C8—H8C109.5
H1A—C1—H1B109.5H8A—C8—H8C109.5
C2—C1—H1C109.5H8B—C8—H8C109.5
H1A—C1—H1C109.5N3—C9—C10120.62 (19)
H1B—C1—H1C109.5N3—C9—C8117.30 (18)
N4—C2—C3120.80 (18)C10—C9—C8122.07 (19)
N4—C2—C1116.81 (19)C11—C10—C9118.96 (19)
C3—C2—C1122.37 (19)C11—C10—H10120.5
C2—C3—C4118.69 (19)C9—C10—H10120.5
C2—C3—H3120.7N2—C11—C10120.71 (18)
C4—C3—H3120.7N2—C11—C12116.59 (19)
N1—C4—C3120.68 (19)C10—C11—C12122.71 (19)
N1—C4—C5116.81 (19)C11—C12—H12A109.5
C3—C4—C5122.50 (19)C11—C12—H12B109.5
C4—C5—H5A109.5H12A—C12—H12B109.5
C4—C5—H5B109.5C11—C12—H12C109.5
H5A—C5—H5B109.5H12A—C12—H12C109.5
C4—C5—H5C109.5H12B—C12—H12C109.5
C6—N4—C2—C30.3 (3)C11—N2—C7—N32.5 (3)
C6—N4—C2—C1178.04 (18)C11—N2—C7—C6175.32 (18)
N4—C2—C3—C40.2 (3)N1—C6—C7—N3178.13 (16)
C1—C2—C3—C4178.1 (2)N4—C6—C7—N30.3 (3)
C6—N1—C4—C30.1 (3)N1—C6—C7—N20.1 (3)
C6—N1—C4—C5179.45 (19)N4—C6—C7—N2178.33 (16)
C2—C3—C4—N10.1 (3)C7—N3—C9—C101.4 (3)
C2—C3—C4—C5179.3 (2)C7—N3—C9—C8179.46 (19)
C4—N1—C6—N40.0 (3)N3—C9—C10—C112.3 (3)
C4—N1—C6—C7178.16 (17)C8—C9—C10—C11178.5 (2)
C2—N4—C6—N10.3 (3)C7—N2—C11—C101.4 (3)
C2—N4—C6—C7177.94 (17)C7—N2—C11—C12178.63 (19)
C9—N3—C7—N21.1 (3)C9—C10—C11—N20.9 (3)
C9—N3—C7—C6176.71 (17)C9—C10—C11—C12179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O3i0.842.082.914 (2)172
O1—H2W···O60.842.002.837 (2)175
O2—H3W···N20.832.202.995 (2)158
O2—H3W···N10.832.493.083 (2)129
O2—H4W···O5ii0.842.042.872 (2)167
O3—H5W···O5iii0.832.042.847 (2)163
O3—H6W···O20.832.012.832 (2)177
O4—H7W···O20.842.012.841 (2)180
O4—H8W···O1iv0.841.922.755 (2)171
O5—H9W···N4v0.832.313.007 (2)142
O5—H9W···N3v0.832.463.196 (2)149
O5—H10W···O30.832.042.849 (2)166
O6—H11W···O4i0.832.052.851 (2)162
O6—H12W···O40.842.062.886 (2)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y+1, z+2; (iv) x+2, y+1, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H14N4·6H2O
Mr322.37
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8622 (19), 11.098 (3), 11.750 (3)
α, β, γ (°)98.233 (3), 91.774 (4), 102.599 (4)
V3)862.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.41 × 0.31 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
6492, 3196, 2026
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 1.04
No. of reflections3196
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O3i0.842.082.914 (2)172.2
O1—H2W···O60.842.002.837 (2)175.3
O2—H3W···N20.832.202.995 (2)158.3
O2—H3W···N10.832.493.083 (2)129.4
O2—H4W···O5ii0.842.042.872 (2)167.4
O3—H5W···O5iii0.832.042.847 (2)163.0
O3—H6W···O20.832.012.832 (2)176.6
O4—H7W···O20.842.012.841 (2)179.7
O4—H8W···O1iv0.841.922.755 (2)170.7
O5—H9W···N4v0.832.313.007 (2)142.2
O5—H9W···N3v0.832.463.196 (2)148.7
O5—H10W···O30.832.042.849 (2)165.5
O6—H11W···O4i0.832.052.851 (2)161.7
O6—H12W···O40.842.062.886 (2)172.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y+1, z+2; (iv) x+2, y+1, z+1; (v) x, y+1, z.
 

Footnotes

Current address: College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471022 People's Republic of China.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (grant No. 20872057) and the Natural Science Foundation of Henan Province (No. 082300420040) for financial support.

References

First citationBaumann, F., Stange, A. & Kaim, W. (1998). Inorg. Chem. Commun. 1, 305–308.  Web of Science CSD CrossRef CAS Google Scholar
First citationBerg, D. J., Bencella, J. M. & Andersen, P. A. (2002). Organometallics, 21, 4622–4631.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuck, U. & Huisken, F. (2000). Chem Rev. 100, 3863–3890.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJi, Z., Huang, S. D. & Guadalupe, A. R. (2000). Inorg. Chim. Acta, 305, 127–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationLakshminarayanan, P. S., Suresh, E. & Ghosh, P. (2006). Angew. Chem. Int. Ed. 45, 3807–3811.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVlad, G. & Horvath, I. T. (2002). J. Org. Chem. 67, 6550–6552.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, X. M., Fang, R. Q. & Wu, H. S. (2005). Cryst. Growth Des. 5, 1335–1337.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o848-o849
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds