organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Pyrene-1-yl)-1,3-di­thiane

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 16 March 2009; accepted 20 March 2009; online 28 March 2009)

In the title compound, C20H16S2, the pyrene ring is planar [maximum deviation 0.0144 (15) Å] and the dithiane ring adopts a chair conformation. The crystal packing is stabilized by C—H⋯π inter­actions. An intra­molecular C—H⋯S hydrogen bond generates an S(5) ring motif.

Related literature

For thio­nation reactions, see: Goswami & Maity (2008[Goswami, S. P. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092-3096.]); Goswami et al. (2009[Goswami, S. P., Maity, A. C., Fun, H. K. & Chantrapromma, S. (2009). Eur. J. Org. Chem. pp. 1417-1426.]); Fun et al. (2009[Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009). Acta Cryst. E65, o173.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354—1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16S2

  • Mr = 320.45

  • Orthorhombic, P 21 21 21

  • a = 7.1424 (1) Å

  • b = 8.6016 (1) Å

  • c = 24.5049 (2) Å

  • V = 1505.48 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.36 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 0.962

  • 29712 measured reflections

  • 6424 independent reflections

  • 5501 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.092

  • S = 1.05

  • 6424 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2662 Friedel pairs

  • Flack parameter: 0.03 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯S2 0.93 2.65 3.0416 (13) 106
C9—H9ACg1i 0.93 2.68 3.4196 (15) 137
C4—H4ACg2ii 0.93 2.98 3.8073 (16) 149
C20—H20ACg3iii 0.97 2.78 3.5339 (15) 135
Symmetry codes: (i) [x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z+1]; (ii) [x+{\script{5\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x-1, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]. Cg1 is the centroid of the C1–C6 ring, Cg2 is the centroid of the C1/C6–C10 ring and Cg3 is the centroid of the C2/C3/C13–C16 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thioacetal protection of carbonyl groups is of paramount importance in synthetic organic chemistry and hence the development of novel thionation reactions remains of great interest (Goswami & Maity, 2008; Fun et al., 2009; Goswami et al., 2009). In addition, thioacetals are also utilized as masked acyl anions or masked methylene functions in carbon-carbon bond forming reactions. Here we report the synthesis of 2-pyrene-1-yl-[1,3]dithiane from pyrene-1-aldehyde using BF3—Et2O as catalyst and its crystal structure.

The asymmetric unit of (I), (Fig. 1), consists of one molecule of the title compound. The bond lengths (Allen et al., 1987) and bond angles are found to have normal values. The pyrene ring is essentially planar with the maximum deviation from planarity being 0.0144 (15)Å for atom C15. The dithiane group adopts a chair conformation with the puckering parameters Q = 0.7477 (12) Å, θ = 9.61 (10)° and ϕ = 66.3 (5)° (Cremer & Pople, 1975).

The crystal packing is stabilized by C—H···π interactions (Table 1). An intramolecular C—H···S hydrogen bonding generates an S(5) ring motif (Bernstein et al., 1995).

Related literature top

For thionation reactions, see: Goswami & Maity (2008); Goswami et al. (2009); Fun et al. (2009). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For ring puckering analysis, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C1–C6 ring, Cg2 is the centroid of the C1/C6–C10 ring and Cg3 is the centroid of the C2/C3/C13–C16 ring.

Experimental top

To a stirred solution of pyrene-1-aldehyde (500 mg., 2.17 mmol) and boron trifluoride etherate (0.5 ml) in dichloromethane (50 ml) cooled at 273 K is added 1,3-propanedithiol (490 mg, 4.5 mmol) dropwise over 15 min with stirring. The mixture is stirred at room temperature for 3 h. The progress of the reaction is monitored by TLC. After completion of the reaction, NaHCO3 solution is added slowly and carefully to neutralize the mixture at room temperature which is then extracted with dichloromethane. The organic layer is dried (anhydrous Na2SO4) and then the solvent is removed under reduced pressure. The crude product was purified by column chromatography using silica gel with 10% ethyl acetate in pet ether as eluant to afford 2-pyrene-1-yl-[1,3]dithiane (620 mg, 89%) as a colourless crystalline solid along with other thiane derivatives.

Refinement top

H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C). 2662 Friedel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Dashed lines indicate the hydrogen bonding.
2-(Pyrene-1-yl)-1,3-dithiane top
Crystal data top
C20H16S2F(000) = 672
Mr = 320.45Dx = 1.414 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9340 reflections
a = 7.1424 (1) Åθ = 2.5–33.7°
b = 8.6016 (1) ŵ = 0.35 mm1
c = 24.5049 (2) ÅT = 100 K
V = 1505.48 (3) Å3Block, colourless
Z = 40.36 × 0.17 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6424 independent reflections
Radiation source: fine-focus sealed tube5501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 35.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.885, Tmax = 0.962k = 1313
29712 measured reflectionsl = 3939
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.0807P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.004
6424 reflectionsΔρmax = 0.48 e Å3
199 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 2662 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (5)
Crystal data top
C20H16S2V = 1505.48 (3) Å3
Mr = 320.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1424 (1) ŵ = 0.35 mm1
b = 8.6016 (1) ÅT = 100 K
c = 24.5049 (2) Å0.36 × 0.17 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6424 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5501 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.962Rint = 0.041
29712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.48 e Å3
S = 1.05Δρmin = 0.27 e Å3
6424 reflectionsAbsolute structure: Flack (1983), 2662 Friedel pairs
199 parametersAbsolute structure parameter: 0.03 (5)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38288 (5)0.10233 (4)0.977454 (13)0.01668 (8)
S20.68513 (5)0.07534 (4)1.037145 (12)0.01665 (8)
C10.6709 (2)0.12016 (15)0.77433 (5)0.0134 (2)
C20.73272 (19)0.07300 (16)0.82744 (5)0.0131 (2)
C30.9112 (2)0.00108 (16)0.83308 (5)0.0140 (2)
C41.0265 (2)0.01927 (17)0.78565 (6)0.0173 (3)
H4A1.14430.06400.78940.021*
C50.9675 (2)0.02513 (17)0.73559 (6)0.0177 (3)
H5A1.04560.01070.70570.021*
C60.7869 (2)0.09392 (16)0.72787 (5)0.0156 (3)
C70.7187 (2)0.13545 (17)0.67611 (5)0.0180 (3)
H7A0.79320.11930.64550.022*
C80.5425 (2)0.19998 (17)0.66994 (6)0.0190 (3)
H8A0.49980.22640.63530.023*
C90.4287 (2)0.22556 (16)0.71502 (5)0.0180 (3)
H9A0.31020.26820.71030.022*
C100.4912 (2)0.18750 (16)0.76761 (5)0.0145 (2)
C110.3773 (2)0.21097 (16)0.81490 (5)0.0162 (3)
H11A0.26120.25880.81100.019*
C120.4341 (2)0.16537 (17)0.86520 (5)0.0155 (3)
H12A0.35550.18100.89500.019*
C130.61341 (19)0.09331 (15)0.87345 (5)0.0129 (2)
C140.6739 (2)0.03780 (15)0.92506 (5)0.0139 (2)
C150.8468 (2)0.03716 (16)0.92932 (5)0.0159 (3)
H15A0.88380.07710.96290.019*
C160.9649 (2)0.05354 (16)0.88468 (5)0.0164 (3)
H16A1.08080.10120.88900.020*
C170.54924 (19)0.05773 (15)0.97455 (5)0.0142 (2)
H17A0.47800.15420.96980.017*
C180.2364 (2)0.03068 (18)1.03263 (5)0.0201 (3)
H18A0.13660.10491.03910.024*
H18B0.17910.06631.02130.024*
C190.3411 (2)0.00340 (18)1.08623 (5)0.0184 (3)
H19A0.39930.10011.09750.022*
H19B0.25160.02591.11420.022*
C200.4911 (2)0.12196 (17)1.08241 (5)0.0174 (3)
H20A0.43310.21751.06990.021*
H20B0.54040.14101.11870.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01679 (16)0.01854 (16)0.01470 (14)0.00372 (13)0.00236 (11)0.00034 (12)
S20.01684 (15)0.02099 (17)0.01214 (13)0.00328 (14)0.00233 (11)0.00104 (12)
C10.0165 (6)0.0116 (5)0.0120 (5)0.0012 (5)0.0008 (4)0.0008 (4)
C20.0142 (6)0.0121 (6)0.0131 (5)0.0004 (5)0.0012 (4)0.0010 (4)
C30.0131 (6)0.0128 (6)0.0160 (5)0.0010 (5)0.0021 (5)0.0015 (4)
C40.0148 (7)0.0169 (6)0.0203 (6)0.0002 (5)0.0011 (5)0.0020 (5)
C50.0171 (7)0.0185 (7)0.0177 (6)0.0019 (5)0.0038 (5)0.0024 (5)
C60.0174 (6)0.0145 (6)0.0148 (5)0.0021 (5)0.0004 (4)0.0012 (5)
C70.0236 (7)0.0177 (7)0.0128 (6)0.0025 (5)0.0003 (5)0.0001 (5)
C80.0256 (7)0.0182 (7)0.0133 (6)0.0021 (6)0.0034 (5)0.0019 (5)
C90.0216 (7)0.0158 (6)0.0166 (6)0.0008 (5)0.0035 (5)0.0020 (5)
C100.0178 (6)0.0124 (6)0.0134 (5)0.0001 (5)0.0017 (5)0.0019 (4)
C110.0159 (6)0.0169 (6)0.0159 (6)0.0033 (5)0.0015 (5)0.0010 (5)
C120.0159 (6)0.0164 (6)0.0141 (5)0.0028 (5)0.0002 (5)0.0007 (5)
C130.0153 (6)0.0103 (5)0.0130 (5)0.0004 (5)0.0015 (4)0.0001 (4)
C140.0151 (6)0.0133 (6)0.0133 (5)0.0012 (5)0.0021 (5)0.0003 (4)
C150.0181 (7)0.0157 (6)0.0138 (5)0.0010 (5)0.0043 (5)0.0001 (5)
C160.0147 (6)0.0160 (6)0.0186 (6)0.0016 (5)0.0027 (5)0.0016 (5)
C170.0163 (6)0.0148 (6)0.0115 (5)0.0014 (5)0.0024 (4)0.0008 (4)
C180.0154 (6)0.0269 (7)0.0179 (6)0.0021 (6)0.0001 (5)0.0018 (5)
C190.0212 (7)0.0212 (7)0.0128 (5)0.0008 (6)0.0005 (5)0.0010 (5)
C200.0207 (7)0.0179 (7)0.0136 (5)0.0005 (6)0.0001 (5)0.0018 (5)
Geometric parameters (Å, º) top
S1—C181.8173 (15)C9—H9A0.9300
S1—C171.8200 (14)C10—C111.4301 (19)
S2—C201.8200 (15)C11—C121.3557 (18)
S2—C171.8214 (13)C11—H11A0.9300
C1—C101.418 (2)C12—C131.4373 (19)
C1—C61.4260 (18)C12—H12A0.9300
C1—C21.4328 (17)C13—C141.4191 (17)
C2—C31.4239 (19)C14—C151.397 (2)
C2—C131.4242 (17)C14—C171.5144 (18)
C3—C161.4024 (18)C15—C161.3884 (19)
C3—C41.4349 (19)C15—H15A0.9300
C4—C51.3521 (19)C16—H16A0.9300
C4—H4A0.9300C17—H17A0.9800
C5—C61.432 (2)C18—C191.5298 (19)
C5—H5A0.9300C18—H18A0.9700
C6—C71.4047 (18)C18—H18B0.9700
C7—C81.384 (2)C19—C201.523 (2)
C7—H7A0.9300C19—H19A0.9700
C8—C91.389 (2)C19—H19B0.9700
C8—H8A0.9300C20—H20A0.9700
C9—C101.4025 (18)C20—H20B0.9700
C18—S1—C1798.54 (7)C13—C12—H12A119.4
C20—S2—C1797.23 (6)C14—C13—C2118.82 (12)
C10—C1—C6119.86 (11)C14—C13—C12122.81 (12)
C10—C1—C2120.01 (12)C2—C13—C12118.34 (11)
C6—C1—C2120.09 (12)C15—C14—C13119.42 (12)
C3—C2—C13120.81 (11)C15—C14—C17120.80 (11)
C3—C2—C1119.16 (12)C13—C14—C17119.77 (12)
C13—C2—C1120.00 (12)C16—C15—C14121.66 (12)
C16—C3—C2118.55 (12)C16—C15—H15A119.2
C16—C3—C4122.18 (13)C14—C15—H15A119.2
C2—C3—C4119.21 (12)C15—C16—C3120.69 (13)
C5—C4—C3121.43 (14)C15—C16—H16A119.7
C5—C4—H4A119.3C3—C16—H16A119.7
C3—C4—H4A119.3C14—C17—S1109.24 (9)
C4—C5—C6121.17 (13)C14—C17—S2111.75 (9)
C4—C5—H5A119.4S1—C17—S2112.20 (7)
C6—C5—H5A119.4C14—C17—H17A107.8
C7—C6—C1118.64 (13)S1—C17—H17A107.8
C7—C6—C5122.46 (12)S2—C17—H17A107.8
C1—C6—C5118.89 (11)C19—C18—S1114.16 (10)
C8—C7—C6121.05 (13)C19—C18—H18A108.7
C8—C7—H7A119.5S1—C18—H18A108.7
C6—C7—H7A119.5C19—C18—H18B108.7
C7—C8—C9120.58 (13)S1—C18—H18B108.7
C7—C8—H8A119.7H18A—C18—H18B107.6
C9—C8—H8A119.7C20—C19—C18113.57 (11)
C8—C9—C10120.51 (14)C20—C19—H19A108.9
C8—C9—H9A119.7C18—C19—H19A108.9
C10—C9—H9A119.7C20—C19—H19B108.9
C9—C10—C1119.35 (13)C18—C19—H19B108.9
C9—C10—C11122.04 (13)H19A—C19—H19B107.7
C1—C10—C11118.60 (11)C19—C20—S2114.65 (10)
C12—C11—C10121.71 (13)C19—C20—H20A108.6
C12—C11—H11A119.1S2—C20—H20A108.6
C10—C11—H11A119.1C19—C20—H20B108.6
C11—C12—C13121.29 (13)S2—C20—H20B108.6
C11—C12—H12A119.4H20A—C20—H20B107.6
C10—C1—C2—C3178.01 (12)C10—C11—C12—C131.0 (2)
C6—C1—C2—C30.47 (19)C3—C2—C13—C141.21 (19)
C10—C1—C2—C130.20 (19)C1—C2—C13—C14176.56 (12)
C6—C1—C2—C13177.34 (12)C3—C2—C13—C12179.43 (12)
C13—C2—C3—C161.84 (19)C1—C2—C13—C121.66 (19)
C1—C2—C3—C16175.95 (13)C11—C12—C13—C14177.07 (13)
C13—C2—C3—C4179.16 (13)C11—C12—C13—C21.1 (2)
C1—C2—C3—C41.37 (19)C2—C13—C14—C150.97 (19)
C16—C3—C4—C5175.68 (14)C12—C13—C14—C15177.17 (13)
C2—C3—C4—C51.5 (2)C2—C13—C14—C17179.86 (12)
C3—C4—C5—C60.2 (2)C12—C13—C14—C171.7 (2)
C10—C1—C6—C70.25 (19)C13—C14—C15—C162.6 (2)
C2—C1—C6—C7177.30 (13)C17—C14—C15—C16178.56 (12)
C10—C1—C6—C5179.72 (13)C14—C15—C16—C31.9 (2)
C2—C1—C6—C52.17 (19)C2—C3—C16—C150.3 (2)
C4—C5—C6—C7177.38 (14)C4—C3—C16—C15177.52 (13)
C4—C5—C6—C12.1 (2)C15—C14—C17—S193.99 (13)
C1—C6—C7—C80.3 (2)C13—C14—C17—S184.88 (13)
C5—C6—C7—C8179.18 (13)C15—C14—C17—S230.77 (16)
C6—C7—C8—C90.2 (2)C13—C14—C17—S2150.36 (10)
C7—C8—C9—C100.5 (2)C18—S1—C17—C14171.69 (9)
C8—C9—C10—C11.0 (2)C18—S1—C17—S263.82 (9)
C8—C9—C10—C11179.45 (13)C20—S2—C17—C14172.85 (9)
C6—C1—C10—C90.88 (19)C20—S2—C17—S164.05 (8)
C2—C1—C10—C9176.67 (13)C17—S1—C18—C1959.16 (12)
C6—C1—C10—C11179.38 (13)S1—C18—C19—C2063.42 (15)
C2—C1—C10—C111.83 (19)C18—C19—C20—S265.04 (15)
C9—C10—C11—C12175.99 (14)C17—S2—C20—C1961.20 (11)
C1—C10—C11—C122.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···S20.932.653.0416 (13)106
C9—H9A···Cg1i0.932.683.4196 (15)137
C4—H4A···Cg2ii0.932.983.8073 (16)149
C20—H20A···Cg3iii0.972.783.5339 (15)135
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+5/2, y+1/2, z+1; (iii) x1, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC20H16S2
Mr320.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.1424 (1), 8.6016 (1), 24.5049 (2)
V3)1505.48 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.36 × 0.17 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.885, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
29712, 6424, 5501
Rint0.041
(sin θ/λ)max1)0.809
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.092, 1.05
No. of reflections6424
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.27
Absolute structureFlack (1983), 2662 Friedel pairs
Absolute structure parameter0.03 (5)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···S20.932.653.0416 (13)106
C9—H9A···Cg1i0.932.683.4196 (15)137
C4—H4A···Cg2ii0.932.983.8073 (16)149
C20—H20A···Cg3iii0.972.783.5339 (15)135
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+5/2, y+1/2, z+1; (iii) x1, y1/2, z+5/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. ACM, NKD and SG thank the DST [SR/S1/OC-13/2005], Government of India, for financial support. ACM and NKD thank the UGC, Government of India, for awarding them each a fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354—1358.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009). Acta Cryst. E65, o173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S. P. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092–3096.  Web of Science CrossRef CAS Google Scholar
First citationGoswami, S. P., Maity, A. C., Fun, H. K. & Chantrapromma, S. (2009). Eur. J. Org. Chem. pp. 1417–1426.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds