organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o898-o899

4,5,7,8,17-Penta­hydr­­oxy-14,18-di­methyl-6-methyl­ene-3,10-dioxa­penta­cyclo­[9.8.0.01,7.04,19.013,18]nona­dec-14-ene-9,16-dione methanol solvate dihydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 March 2009; accepted 22 March 2009; online 28 March 2009)

The title quassinoid compound, C20H24O9·CH3OH·2H2O, is a natural eurycomanone isolated from the roots of Eurycoma longifolia. The mol­ecules contain a fused five-ring system, with one tetra­hydro­furan ring adopting an envelope conformation, one tetra­hydro­pyran-2-one ring in a screw boat conformation, one cyclo­hexenone ring in a half-chair conformation and two cyclo­hexane rings in chair conformations. Intra­molecular C—H⋯O inter­actions generate S(5) ring motifs and an O—H⋯O inter­action generates an S(7) ring motif. In the crystal, mol­ecules are linked via inter­molecular O—H⋯O inter­actions along the b axis and further stacked along a axis. The absolute configuration of the title compound was inferred from previously solved structures of its analogues.

Related literature

For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For quassinoids and bioactivity, see Itokawa et al. (1993[Itokawa, H., Qin, X. R., Morita, H., Takeya, K. & Iitaka, Y. (1993). Chem. Pharm. Bull. 41, 403-405.]); Chan et al. (1992[Chan, K. L., Iitaka, Y., Noguchi, H., Sugiyama, H., Saito, I. & Sankawa, U. (1992). Phytochemistry, 31, 4295-4298.]); Kardono et al. (1991[Kardono, L. B. S., Angerhofer, C. K., Tsauri, S., Padmawinata, K., Pezzuto, J. M. & Kinghorn, A. D. (1991). J. Nat. Prod. 54, 1360-1367.]); Itokawa et al. (1992[Itokawa, H., Kishi, E., Morita, H. & Takeya, K. (1992). Chem. Pharm. Bull. 40, 1053-1055.]); Morita et al. (1992[Morita, H., Kishi, E., Takeya, K. & Itokawa, H. (1992). Phytochemistry, 31, 3993-3995.]); Morita et al. (1993[Morita, H., Kishi, E., Takeya, K., Itokawa, H. & Iitaka, Y. (1993). Phytochemistry, 34, 765-771.]); Tada et al. (1991[Tada, H., Yasuda, F., Otani, K., Doteuchi, M., Ishihara, Y. & Shiro, M. (1991). Eur. J. Med. Chem. 26, 345-349.]); Ang et al. (1995[Ang, H. H., Chan, K. L. & Mak, J. W. (1995). Planta Med. 61, 177-178.]); Chan et al. (2004[Chan, K.-L., Choo, C.-Y., Abdullah, N. R. & Ismail, Z. (2004). J. Ethnopharmacol. 92, 223-227.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24O9·CH4O·2H2O

  • Mr = 476.47

  • Orthorhombic, P 21 21 21

  • a = 9.1817 (1) Å

  • b = 10.7806 (2) Å

  • c = 21.7817 (3) Å

  • V = 2156.04 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.43 × 0.28 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.987

  • 27636 measured reflections

  • 3577 independent reflections

  • 3352 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.09

  • 3577 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O4i 0.88 1.94 2.810 (2) 169
O2—H2⋯O2Wii 0.82 1.85 2.656 (3) 169
O1W—H2W1⋯O3iii 0.84 2.06 2.873 (3) 163
O3—H3⋯O2 0.82 1.71 2.525 (2) 171
O2W—H1W2⋯O8 0.95 2.03 2.950 (3) 164
O2W—H2W2⋯O10 0.85 1.91 2.760 (3) 179
O5—H5⋯O3iv 0.82 1.99 2.805 (2) 172
O6—H6⋯O9v 0.82 2.14 2.848 (2) 144
O7—H7⋯O1Wvi 0.82 1.84 2.653 (3) 171
O10—H10⋯O7vii 0.82 2.29 3.011 (3) 147
O10—H10⋯O8vii 0.82 2.23 2.911 (3) 140
C1—H1A⋯O9 0.98 2.48 2.936 (3) 108
C1—H1A⋯O1iii 0.98 2.56 3.507 (3) 162
C7—H7A⋯O5 0.98 2.38 2.856 (3) 109
C12—H12A⋯O1iii 0.98 2.47 3.168 (3) 128
C17—H17A⋯O10v 0.97 2.60 3.428 (3) 144
C17—H17B⋯O6 0.97 2.50 2.929 (3) 107
C19—H19B⋯O2 0.96 2.56 2.957 (3) 105
Symmetry codes: (i) x+1, y+1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iv) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+2]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) x, y-1, z; (vii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Eurycoma longifolia Jack is a tall, slender shrub-tree, commonly found in lowland forests below 500 meters above sea level in Southeast Asia. The roots of this Simaroubaceae plant are used in folk medicine for intermittent fever (malaria), dysentery, glandular swelling and aphrodisiac properties. Various classes of chemical constituents (Itokawa et al., 1993, Chan et al., 1992, Kardono et al., 1991, Itokawa et al., 1992, Morita et al., 1992, Morita et al., 1993) have been identified and some have shown antiulcer (Tada et al., 1991), cytotoxic (Kardono et al., 1991, Itokawa et al., 1992) and antimalarial (Ang et al., 1995, Chan et al., 2004) activities. In our continuing search for the bioactive compounds from E. longifolia, we have isolated eurycomanone (1), a quassinoid in crystalline form.

The title compound (Fig. 1), contains quassinoid, one molecule of methanol and two molecules of water solvents. The bond lengths and angles are within normal ranges (Allen et al., 1987). The molecule of the title compound contains a fused five-ring system A/B/C/D/E (Scheme 1). The A/B and B/D junctions are trans-fused, whereas B/C, B/E and C/D are cis-fused (Fig 1). The cyclohexenone ring A (C1—C6) has a half-chair conformation with puckering parameters of Q = 0.507 (2) Å, Θ = 130.2 (3)° and ϕ = 97.3 (4)°. The cyclohexane ring B (C1-C6-C7-C16-C14-C15) and D (C7-C8-C9-C10-C11-C16) adopt a chair conformation with puckering parameters of Q = 0.565 (2) Å, Θ = 154.6 (3)° and ϕ = 179.8 (6)° and Q = 0.660 (2) Å, Θ = 151.68 (17)° and ϕ = 183.1 (4)° respectively. The tetrahydro-pyran-2-one ring C (O9-C13-C12-C11-C16-14) has a screw boat conformation with puckering parameters Q = 0.502 (3) Å, Θ = 38.4 (2)° and ϕ = 193.4 (5)°. The tetrahydro-furan ring E (C7-C8-O4-C17-C16) is in an envelope conformation with puckering parameters of Q = 0.450 (2) Å and ϕ = 254.5 (3)°.

The intramolecular interactions C1—H1A···O9, C17—H17B···O6, C19—H19B···O2 and C7—H7A···O5 generate S(5) ring motifs, and O3—H3···O2 generates an S(7) ring motif (Bernstein et al., 1995). The crystal packing shows that the molecules were linked via intermolecular O—H···O interactions along b axis and further stacked along a axis (Fig 2). The absolute configuration of the title compound was inferred from previously solved structures of its analogues (Tada et al., 1991).

Related literature top

For bond-length data, see Allen et al. (1987). For hydrogen-bond motifs, see Bernstein et al. (1995). For ring conformations, see Cremer & Pople (1975). For quassinoids and bioactivity, see Itokawa et al. (1993); Chan et al. (1992); Kardono et al. (1991); Itokawa et al. (1992); Morita et al. (1992); Morita et al. (1993); Tada et al. (1991); Ang et al. (1995); Chan et al. (2004). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The air-dried powdered roots of E. longifolia (11.6 kg) were extracted with MeOH. The MeOH extract on evaporation to dryness yielded 485 g of dark brown residue which was next chromatographed on a Diaion HP 20 column using H2O-MeOH (1:0 - 0:1) gradient mixtures to afford 4 fractions (Fr 1 - 4). Fr 2 was concentrated under vacuum to give 52.2 g of residue. The residue was resuspended in water and then partitioned successively with ethyl acetate and saturated n-butanol to yield three subfractions. The n-BuOH subfraction (20.4 g) was further fractionated on a silica gel column using CHCl3-MeOH (1:0 - 1:1) gradient mixtures to obtain 7 portions (A1-A7). A3 was further purified by centrifugal silica gel TLC with CHCl3-MeOH (1:0 - 1:1) gradient mixtures. Upon solvent removal, the residue obtained on subsequent recrystallization from CHCl3-MeOH (9:1, v/v) at room temperature afforded 1 as colourless crystals (75.3 mg).

Refinement top

The H atoms bound to O1W and O2W were located from the difference Fourier map and constrained to ride with the parent atom with Uiso(H)= 1.5 Ueq(O). The H atoms of the hydroxy groups were positioned by a freely rotating O—H bond and constrained with a fixed distance of 0.82 Å. The rest of the hydrogen atoms were positioned geometrically with a riding model approximation with C—H = 0.93-0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was used for the hydrogen of the methyl groups. As there are not enough anomalous dispersion to determine the aboslute configuration, 2770 Friedel pairs were merged before final refinement. The absolute stereochemistry of eurycomanone was inferred following those reported (Tada et al., 1991) for its analogues.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), shows that the molecules were linked via intermolecular O—H···O interactions along b axis and further stacked along a axis. Intermolecular interactions are drawn as dashed lines.
4,5,7,8,17-pentahydroxy-14,18-dimethyl-6-methylene-3,10-dioxapentacyclo [9.8.0.01,7.04,19.013,18]nonadec-14-ene-9,16-dione methanol solvate dihydrate top
Crystal data top
C20H24O9·CH4O·2H2OF(000) = 1016
Mr = 476.47Dx = 1.468 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9889 reflections
a = 9.1817 (1) Åθ = 2.4–30.1°
b = 10.7806 (2) ŵ = 0.12 mm1
c = 21.7817 (3) ÅT = 100 K
V = 2156.04 (6) Å3Block, colourless
Z = 40.43 × 0.28 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3577 independent reflections
Radiation source: fine-focus sealed tube3352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.950, Tmax = 0.987k = 1515
27636 measured reflectionsl = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0739P)2 + 1.2123P]
where P = (Fo2 + 2Fc2)/3
3577 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C20H24O9·CH4O·2H2OV = 2156.04 (6) Å3
Mr = 476.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1817 (1) ŵ = 0.12 mm1
b = 10.7806 (2) ÅT = 100 K
c = 21.7817 (3) Å0.43 × 0.28 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3577 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3352 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.987Rint = 0.033
27636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.09Δρmax = 1.08 e Å3
3577 reflectionsΔρmin = 0.46 e Å3
307 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1926 (2)0.29462 (17)1.07263 (8)0.0182 (4)
O20.3034 (2)0.07030 (16)1.05042 (8)0.0175 (4)
H20.32230.09971.08420.026*
O30.28241 (19)0.14352 (15)1.00393 (7)0.0117 (3)
H30.28170.07571.02100.018*
O40.22993 (18)0.17614 (15)0.90312 (7)0.0118 (3)
O50.58130 (19)0.16373 (15)0.97902 (7)0.0129 (3)
H50.64650.21460.98430.019*
O60.5152 (2)0.13426 (15)0.77017 (7)0.0127 (3)
H60.48340.20450.76480.019*
O70.78562 (19)0.09069 (17)0.82090 (8)0.0147 (3)
H70.82410.12580.85010.022*
O80.74680 (19)0.14137 (17)0.77962 (8)0.0167 (4)
O90.51228 (19)0.13846 (15)0.79549 (7)0.0126 (3)
C10.3189 (3)0.22030 (19)0.89489 (10)0.0101 (4)
H1A0.42550.22490.89460.012*
C20.2671 (3)0.3479 (2)0.91422 (11)0.0130 (4)
C30.2330 (3)0.3740 (2)0.97285 (11)0.0152 (4)
H3A0.20230.45360.98300.018*
C40.2431 (3)0.2802 (2)1.02085 (11)0.0133 (4)
C50.3254 (3)0.1614 (2)1.00468 (10)0.0112 (4)
H5A0.42960.18101.00350.013*
C60.2803 (2)0.11364 (19)0.94038 (10)0.0093 (4)
C70.3786 (3)0.00071 (19)0.92185 (9)0.0086 (4)
H7A0.47830.01890.93510.010*
C80.3392 (2)0.1308 (2)0.94491 (9)0.0094 (4)
C90.4726 (3)0.21530 (19)0.93946 (9)0.0106 (4)
H9A0.44700.29840.95420.013*
C100.5283 (3)0.2248 (2)0.87386 (10)0.0108 (4)
C110.5208 (3)0.10845 (19)0.83436 (9)0.0094 (4)
C120.6596 (3)0.0292 (2)0.84086 (10)0.0105 (4)
H12A0.67180.00590.88400.013*
C130.6438 (3)0.0881 (2)0.80244 (10)0.0118 (4)
C140.3716 (3)0.0779 (2)0.80774 (10)0.0104 (4)
H14A0.33270.04720.76870.012*
C150.2754 (3)0.1834 (2)0.82945 (10)0.0119 (4)
H15A0.17420.15760.82880.014*
H15B0.28610.25400.80220.014*
C160.3828 (3)0.0312 (2)0.85175 (10)0.0094 (4)
C170.2494 (3)0.1166 (2)0.84404 (10)0.0118 (4)
H17A0.16380.06870.83320.014*
H17B0.26690.17790.81230.014*
C180.2638 (3)0.4474 (2)0.86586 (12)0.0194 (5)
H18A0.25060.52680.88500.029*
H18B0.18460.43190.83810.029*
H18C0.35400.44690.84360.029*
C190.1144 (3)0.0868 (2)0.94083 (11)0.0125 (4)
H19A0.06180.16370.94230.019*
H19B0.09040.03770.97620.019*
H19C0.08830.04230.90430.019*
C200.5852 (3)0.3310 (2)0.85366 (11)0.0154 (5)
H20A0.59080.39920.87970.018*
H20B0.61920.33680.81360.018*
O100.9816 (2)0.5246 (2)0.75796 (10)0.0265 (4)
H101.05880.52270.73900.040*
C210.9754 (3)0.6332 (3)0.79372 (14)0.0273 (6)
H21A0.89550.62760.82200.041*
H21B0.96190.70370.76740.041*
H21C1.06480.64240.81620.041*
O1W0.9259 (2)0.8195 (2)0.91766 (10)0.0283 (5)
H1W11.02160.81370.91730.042*
H2W10.89590.75740.93710.042*
O2W0.8990 (3)0.3466 (2)0.84211 (9)0.0341 (6)
H1W20.83460.29080.82210.051*
H2W20.92610.40120.81610.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0210 (9)0.0187 (8)0.0150 (8)0.0028 (7)0.0020 (7)0.0043 (7)
O20.0321 (10)0.0119 (7)0.0086 (7)0.0001 (7)0.0005 (7)0.0005 (6)
O30.0158 (8)0.0101 (7)0.0092 (7)0.0001 (6)0.0037 (6)0.0008 (5)
O40.0128 (7)0.0118 (7)0.0108 (7)0.0035 (6)0.0018 (6)0.0019 (6)
O50.0141 (8)0.0127 (7)0.0121 (7)0.0033 (6)0.0032 (6)0.0012 (6)
O60.0206 (8)0.0112 (7)0.0063 (6)0.0015 (7)0.0009 (6)0.0017 (5)
O70.0134 (8)0.0162 (8)0.0146 (7)0.0044 (7)0.0038 (6)0.0033 (6)
O80.0171 (9)0.0142 (7)0.0187 (8)0.0025 (7)0.0036 (7)0.0023 (6)
O90.0142 (8)0.0098 (7)0.0136 (7)0.0001 (6)0.0011 (6)0.0032 (6)
C10.0122 (9)0.0079 (8)0.0102 (9)0.0010 (7)0.0000 (8)0.0003 (7)
C20.0134 (10)0.0084 (9)0.0173 (10)0.0004 (8)0.0002 (8)0.0008 (8)
C30.0159 (11)0.0111 (9)0.0186 (11)0.0014 (8)0.0004 (9)0.0026 (8)
C40.0139 (11)0.0100 (9)0.0159 (10)0.0005 (8)0.0012 (8)0.0036 (8)
C50.0152 (10)0.0090 (9)0.0093 (9)0.0017 (8)0.0001 (8)0.0021 (7)
C60.0113 (9)0.0073 (8)0.0093 (8)0.0015 (8)0.0011 (7)0.0009 (7)
C70.0107 (9)0.0080 (8)0.0071 (8)0.0001 (7)0.0005 (8)0.0001 (7)
C80.0102 (9)0.0105 (9)0.0075 (8)0.0004 (8)0.0010 (7)0.0001 (7)
C90.0141 (10)0.0088 (8)0.0088 (8)0.0002 (8)0.0002 (8)0.0002 (7)
C100.0142 (10)0.0093 (8)0.0089 (9)0.0000 (8)0.0001 (8)0.0006 (7)
C110.0135 (10)0.0085 (8)0.0063 (8)0.0000 (8)0.0001 (8)0.0007 (7)
C120.0134 (10)0.0094 (9)0.0088 (8)0.0001 (8)0.0000 (8)0.0001 (7)
C130.0158 (11)0.0100 (9)0.0097 (9)0.0014 (8)0.0013 (8)0.0020 (7)
C140.0128 (10)0.0103 (9)0.0081 (9)0.0009 (8)0.0012 (8)0.0008 (7)
C150.0151 (10)0.0112 (9)0.0094 (9)0.0001 (8)0.0015 (8)0.0013 (7)
C160.0130 (10)0.0080 (9)0.0072 (8)0.0012 (8)0.0015 (7)0.0003 (7)
C170.0132 (10)0.0128 (10)0.0094 (9)0.0018 (8)0.0015 (8)0.0003 (7)
C180.0282 (13)0.0100 (9)0.0199 (11)0.0022 (9)0.0016 (10)0.0030 (8)
C190.0107 (10)0.0120 (9)0.0147 (10)0.0004 (8)0.0005 (8)0.0008 (8)
C200.0230 (12)0.0115 (10)0.0116 (9)0.0034 (9)0.0007 (9)0.0010 (8)
O100.0200 (10)0.0323 (11)0.0272 (10)0.0057 (9)0.0002 (8)0.0013 (8)
C210.0211 (13)0.0325 (14)0.0283 (13)0.0028 (12)0.0014 (11)0.0004 (12)
O1W0.0188 (9)0.0352 (11)0.0310 (10)0.0017 (9)0.0018 (8)0.0140 (9)
O2W0.0531 (15)0.0298 (11)0.0195 (9)0.0224 (11)0.0129 (10)0.0082 (8)
Geometric parameters (Å, º) top
O1—C41.229 (3)C9—C101.521 (3)
O2—C51.414 (3)C9—H9A0.9800
O2—H20.8200C10—C201.333 (3)
O3—C81.394 (3)C10—C111.523 (3)
O3—H30.8200C11—C121.541 (3)
O4—C81.440 (3)C11—C161.562 (3)
O4—C171.449 (3)C12—C131.523 (3)
O5—C91.431 (3)C12—H12A0.9800
O5—H50.8200C14—C151.516 (3)
O6—C111.426 (2)C14—C161.520 (3)
O6—H60.8200C14—H14A0.9800
O7—C121.402 (3)C15—H15A0.9700
O7—H70.8200C15—H15B0.9700
O8—C131.213 (3)C16—C171.542 (3)
O9—C131.333 (3)C17—H17A0.9700
O9—C141.472 (3)C17—H17B0.9700
C1—C21.516 (3)C18—H18A0.9600
C1—C151.533 (3)C18—H18B0.9600
C1—C61.559 (3)C18—H18C0.9600
C1—H1A0.9800C19—H19A0.9600
C2—C31.345 (3)C19—H19B0.9600
C2—C181.503 (3)C19—H19C0.9600
C3—C41.458 (3)C20—H20A0.9300
C3—H3A0.9300C20—H20B0.9300
C4—C51.528 (3)O10—C211.408 (4)
C5—C61.549 (3)O10—H100.8200
C5—H5A0.9800C21—H21A0.9600
C6—C191.551 (3)C21—H21B0.9600
C6—C71.568 (3)C21—H21C0.9600
C7—C81.547 (3)O1W—H1W10.8814
C7—C161.566 (3)O1W—H2W10.8396
C7—H7A0.9800O2W—H1W20.9487
C8—C91.531 (3)O2W—H2W20.8533
C5—O2—H2109.5C10—C11—C16109.83 (18)
C8—O3—H3109.5C12—C11—C16110.67 (17)
C8—O4—C17108.97 (16)O7—C12—C13107.48 (18)
C9—O5—H5109.5O7—C12—C11113.11 (18)
C11—O6—H6109.5C13—C12—C11109.31 (18)
C12—O7—H7109.5O7—C12—H12A109.0
C13—O9—C14126.43 (17)C13—C12—H12A109.0
C2—C1—C15114.35 (19)C11—C12—H12A109.0
C2—C1—C6114.97 (18)O8—C13—O9117.8 (2)
C15—C1—C6109.89 (17)O8—C13—C12123.0 (2)
C2—C1—H1A105.6O9—C13—C12119.14 (19)
C15—C1—H1A105.6O9—C14—C15103.60 (17)
C6—C1—H1A105.6O9—C14—C16113.43 (18)
C3—C2—C18120.8 (2)C15—C14—C16115.04 (18)
C3—C2—C1121.8 (2)O9—C14—H14A108.2
C18—C2—C1117.3 (2)C15—C14—H14A108.2
C2—C3—C4121.4 (2)C16—C14—H14A108.2
C2—C3—H3A119.3C14—C15—C1109.45 (18)
C4—C3—H3A119.3C14—C15—H15A109.8
O1—C4—C3123.1 (2)C1—C15—H15A109.8
O1—C4—C5120.3 (2)C14—C15—H15B109.8
C3—C4—C5116.6 (2)C1—C15—H15B109.8
O2—C5—C4110.43 (18)H15A—C15—H15B108.2
O2—C5—C6111.59 (18)C14—C16—C17109.82 (18)
C4—C5—C6110.77 (18)C14—C16—C11108.34 (18)
O2—C5—H5A108.0C17—C16—C11107.41 (17)
C4—C5—H5A108.0C14—C16—C7116.32 (17)
C6—C5—H5A108.0C17—C16—C7102.56 (17)
C5—C6—C19108.61 (18)C11—C16—C7111.96 (17)
C5—C6—C1105.59 (16)O4—C17—C16105.42 (17)
C19—C6—C1111.42 (18)O4—C17—H17A110.7
C5—C6—C7109.69 (17)C16—C17—H17A110.7
C19—C6—C7114.94 (18)O4—C17—H17B110.7
C1—C6—C7106.17 (17)C16—C17—H17B110.7
C8—C7—C1696.96 (16)H17A—C17—H17B108.8
C8—C7—C6119.59 (18)C2—C18—H18A109.5
C16—C7—C6115.84 (17)C2—C18—H18B109.5
C8—C7—H7A107.9H18A—C18—H18B109.5
C16—C7—H7A107.9C2—C18—H18C109.5
C6—C7—H7A107.9H18A—C18—H18C109.5
O3—C8—O4106.79 (17)H18B—C18—H18C109.5
O3—C8—C9108.20 (17)C6—C19—H19A109.5
O4—C8—C9107.87 (17)C6—C19—H19B109.5
O3—C8—C7118.47 (17)H19A—C19—H19B109.5
O4—C8—C7105.57 (17)C6—C19—H19C109.5
C9—C8—C7109.47 (18)H19A—C19—H19C109.5
O5—C9—C10110.95 (19)H19B—C19—H19C109.5
O5—C9—C8106.27 (17)C10—C20—H20A120.0
C10—C9—C8112.45 (17)C10—C20—H20B120.0
O5—C9—H9A109.0H20A—C20—H20B120.0
C10—C9—H9A109.0C21—O10—H10109.5
C8—C9—H9A109.0O10—C21—H21A109.5
C20—C10—C9120.0 (2)O10—C21—H21B109.5
C20—C10—C11122.6 (2)H21A—C21—H21B109.5
C9—C10—C11117.39 (18)O10—C21—H21C109.5
O6—C11—C10113.25 (17)H21A—C21—H21C109.5
O6—C11—C12103.16 (17)H21B—C21—H21C109.5
C10—C11—C12111.51 (18)H1W1—O1W—H2W1105.9
O6—C11—C16108.23 (17)H1W2—O2W—H2W2108.4
C15—C1—C2—C3148.4 (2)C20—C10—C11—O627.0 (3)
C6—C1—C2—C319.9 (3)C9—C10—C11—O6155.1 (2)
C15—C1—C2—C1835.2 (3)C20—C10—C11—C1288.9 (3)
C6—C1—C2—C18163.7 (2)C9—C10—C11—C1289.0 (2)
C18—C2—C3—C4176.8 (2)C20—C10—C11—C16148.1 (2)
C1—C2—C3—C40.5 (4)C9—C10—C11—C1634.0 (3)
C2—C3—C4—O1168.7 (2)O6—C11—C12—O759.4 (2)
C2—C3—C4—C513.3 (3)C10—C11—C12—O762.5 (2)
O1—C4—C5—O213.0 (3)C16—C11—C12—O7174.96 (17)
C3—C4—C5—O2168.9 (2)O6—C11—C12—C1360.3 (2)
O1—C4—C5—C6137.2 (2)C10—C11—C12—C13177.82 (18)
C3—C4—C5—C644.8 (3)C16—C11—C12—C1355.3 (2)
O2—C5—C6—C1963.6 (2)C14—O9—C13—O8166.4 (2)
C4—C5—C6—C1959.9 (2)C14—O9—C13—C1216.6 (3)
O2—C5—C6—C1176.83 (19)O7—C12—C13—O827.5 (3)
C4—C5—C6—C159.7 (2)C11—C12—C13—O8150.6 (2)
O2—C5—C6—C762.8 (2)O7—C12—C13—O9155.59 (19)
C4—C5—C6—C7173.71 (18)C11—C12—C13—O932.5 (3)
C2—C1—C6—C548.1 (2)C13—O9—C14—C15147.4 (2)
C15—C1—C6—C5178.84 (18)C13—O9—C14—C1622.0 (3)
C2—C1—C6—C1969.6 (2)O9—C14—C15—C173.9 (2)
C15—C1—C6—C1961.1 (2)C16—C14—C15—C150.4 (3)
C2—C1—C6—C7164.58 (18)C2—C1—C15—C14161.25 (19)
C15—C1—C6—C764.7 (2)C6—C1—C15—C1467.7 (2)
C5—C6—C7—C883.5 (2)O9—C14—C16—C17159.36 (18)
C19—C6—C7—C839.2 (3)C15—C14—C16—C1781.6 (2)
C1—C6—C7—C8162.86 (18)O9—C14—C16—C1142.3 (2)
C5—C6—C7—C16161.04 (18)C15—C14—C16—C11161.36 (18)
C19—C6—C7—C1676.2 (2)O9—C14—C16—C784.8 (2)
C1—C6—C7—C1647.4 (2)C15—C14—C16—C734.2 (3)
C17—O4—C8—O3154.14 (17)O6—C11—C16—C1451.0 (2)
C17—O4—C8—C989.8 (2)C10—C11—C16—C14175.06 (18)
C17—O4—C8—C727.2 (2)C12—C11—C16—C1461.4 (2)
C16—C7—C8—O3161.90 (19)O6—C11—C16—C1767.6 (2)
C6—C7—C8—O336.9 (3)C10—C11—C16—C1756.5 (2)
C16—C7—C8—O442.4 (2)C12—C11—C16—C17179.97 (17)
C6—C7—C8—O482.6 (2)O6—C11—C16—C7179.46 (17)
C16—C7—C8—C973.4 (2)C10—C11—C16—C755.4 (2)
C6—C7—C8—C9161.50 (18)C12—C11—C16—C768.2 (2)
O3—C8—C9—O567.8 (2)C8—C7—C16—C14161.50 (19)
O4—C8—C9—O5176.98 (16)C6—C7—C16—C1433.8 (3)
C7—C8—C9—O562.6 (2)C8—C7—C16—C1741.6 (2)
O3—C8—C9—C10170.59 (18)C6—C7—C16—C1786.1 (2)
O4—C8—C9—C1055.4 (2)C8—C7—C16—C1173.2 (2)
C7—C8—C9—C1059.0 (2)C6—C7—C16—C11159.07 (18)
O5—C9—C10—C2095.7 (3)C8—O4—C17—C161.0 (2)
C8—C9—C10—C20145.4 (2)C14—C16—C17—O4152.40 (18)
O5—C9—C10—C1182.2 (2)C11—C16—C17—O489.98 (19)
C8—C9—C10—C1136.6 (3)C7—C16—C17—O428.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.881.942.810 (2)169
O2—H2···O2Wii0.821.852.656 (3)169
O1W—H2W1···O3iii0.842.062.873 (3)163
O3—H3···O20.821.712.525 (2)171
O2W—H1W2···O80.952.032.950 (3)164
O2W—H2W2···O100.851.912.760 (3)179
O5—H5···O3iv0.821.992.805 (2)172
O6—H6···O9v0.822.142.848 (2)144
O7—H7···O1Wvi0.821.842.653 (3)171
O10—H10···O7vii0.822.293.011 (3)147
O10—H10···O8vii0.822.232.911 (3)140
C1—H1A···O90.982.482.936 (3)108
C1—H1A···O1iii0.982.563.507 (3)162
C7—H7A···O50.982.382.856 (3)109
C12—H12A···O1iii0.982.473.168 (3)128
C17—H17A···O10v0.972.603.428 (3)144
C17—H17B···O60.972.502.929 (3)107
C19—H19B···O20.962.562.957 (3)105
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z+2; (iii) x+1/2, y+1/2, z+2; (iv) x+1/2, y1/2, z+2; (v) x+1, y1/2, z+3/2; (vi) x, y1, z; (vii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H24O9·CH4O·2H2O
Mr476.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.1817 (1), 10.7806 (2), 21.7817 (3)
V3)2156.04 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.43 × 0.28 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.950, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
27636, 3577, 3352
Rint0.033
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.09
No. of reflections3577
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.46

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.88001.94002.810 (2)169.00
O2—H2···O2Wii0.82001.85002.656 (3)169.00
O1W—H2W1···O3iii0.84002.06002.873 (3)163.00
O3—H3···O20.82001.71002.525 (2)171.00
O2W—H1W2···O80.95002.03002.950 (3)164.00
O2W—H2W2···O100.85001.91002.760 (3)179.00
O5—H5···O3iv0.82001.99002.805 (2)172.00
O6—H6···O9v0.82002.14002.848 (2)144.00
O7—H7···O1Wvi0.82001.84002.653 (3)171.00
O10—H10···O7vii0.82002.29003.011 (3)147.00
O10—H10···O8vii0.82002.23002.911 (3)140.00
C1—H1A···O90.98002.48002.936 (3)108.00
C1—H1A···O1iii0.98002.56003.507 (3)162.00
C7—H7A···O50.98002.38002.856 (3)109.00
C12—H12A···O1iii0.98002.47003.168 (3)128.00
C17—H17A···O10v0.97002.60003.428 (3)144.00
C17—H17B···O60.97002.50002.929 (3)107.00
C19—H19B···O20.96002.56002.957 (3)105.00
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z+2; (iii) x+1/2, y+1/2, z+2; (iv) x+1/2, y1/2, z+2; (v) x+1, y1/2, z+3/2; (vi) x, y1, z; (vii) x+2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author: e-mail: klchan@usm.my.

Acknowledgements

KLC and CHT thank Universiti Sains Malaysia for a Research University grant No. 1001/PFARMASI/813006. HKF and SCT thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. YCS thanks Universiti Sains Malaysia for a studentship award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAng, H. H., Chan, K. L. & Mak, J. W. (1995). Planta Med. 61, 177–178.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, K.-L., Choo, C.-Y., Abdullah, N. R. & Ismail, Z. (2004). J. Ethnopharmacol. 92, 223–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChan, K. L., Iitaka, Y., Noguchi, H., Sugiyama, H., Saito, I. & Sankawa, U. (1992). Phytochemistry, 31, 4295–4298.  CSD CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationItokawa, H., Kishi, E., Morita, H. & Takeya, K. (1992). Chem. Pharm. Bull. 40, 1053–1055.  CrossRef CAS Google Scholar
First citationItokawa, H., Qin, X. R., Morita, H., Takeya, K. & Iitaka, Y. (1993). Chem. Pharm. Bull. 41, 403–405.  CrossRef CAS Google Scholar
First citationKardono, L. B. S., Angerhofer, C. K., Tsauri, S., Padmawinata, K., Pezzuto, J. M. & Kinghorn, A. D. (1991). J. Nat. Prod. 54, 1360–1367.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMorita, H., Kishi, E., Takeya, K. & Itokawa, H. (1992). Phytochemistry, 31, 3993–3995.  CrossRef CAS Web of Science Google Scholar
First citationMorita, H., Kishi, E., Takeya, K., Itokawa, H. & Iitaka, Y. (1993). Phytochemistry, 34, 765–771.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTada, H., Yasuda, F., Otani, K., Doteuchi, M., Ishihara, Y. & Shiro, M. (1991). Eur. J. Med. Chem. 26, 345–349.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o898-o899
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds