organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3,6,6-Tetra­methyl-9-phenyl-3,4,5,6-tetra­hydro-9H-xanthene-1,8(2H,7H)-dione

aOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India, bMaterials Research Centre, Indian Institute of Science, Bangalore 560 012, India, cDepartment of Physics, The Madura College, Madurai 625 011, India, and dDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 18 March 2009; accepted 23 March 2009; online 28 March 2009)

In the title compound, C23H26O3, the three six-membered rings of the xanthene system are non-planar, having total puckering amplitudes, QT, of 0.443 (2), 0.202 (2) and 0.449 (2) Å. The central ring adopts a boat conformation and the outer rings adopt sofa conformations. The crystal structure is stabilized by van der Waals inter­actions.

Related literature

For the biological and pharmaceutical properties of xanthenes, see: Hideo (1981[Hideo, T. (1981). Jpn Tokkyo Koho JP 56 005 480.]); Lambert et al. (1997[Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Intl Appl. WO 9706178.]); Poupelin et al. (1978[Poupelin, J. P., Saint-Rut, G., Foussard-Blanpin, O., Narcisse, G., Uchida- Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67-71.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26O3

  • Mr = 350.44

  • Monoclinic, P 21 /c

  • a = 6.0562 (5) Å

  • b = 19.7680 (18) Å

  • c = 16.4325 (13) Å

  • β = 97.924 (3)°

  • V = 1948.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.17 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.992

  • 11861 measured reflections

  • 4284 independent reflections

  • 2825 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.138

  • S = 1.03

  • 4284 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Xanthenes are an important class of organic compounds that received considerable attention from many pharmaceuticals and organic chemists, actually because of the broad spectrum of their biological and pharmaceutical properties such as agricultural bactericide effects (Hideo, 1981), photodynamic therapy, anti-inflammatory activities (Poupelin et al., 1978) and antiviral effects (Lambert et al., 1997). Considering the importance of the title compound (I), we report here the crystal structure of it.

In the molecule of (I), (Fig. 1), rings A(C14—C6), B(O1/C6/C5/C4/C3/C2) and C(C2—C7) are not planar, having total puckering amplitudes, QT, of 0.443 (2), 0.202 (2) and 0.449 (2) Å, respectively. They adopt envelope [Φ = 12.2 (3) and θ = 130.5 (2) °], boat [Φ = 351.8 (5) and θ = 102.5 (5) °] and envelope [Φ = 45.2 (4) and θ = 125.6 (2) °] conformations (Cremer & Pople, 1975). In rings A and C, atoms C13 and C8 are displaced by 0.609 (1) and 0.616 (1) Å from the plane of the other ring atoms, respectively. Ring D(C15—C20) is, of course, planar.

The crystal structure is stabilized by van der Waals interactions.

Related literature top

For the biological and pharmaceutical properties of xanthenes, see: Hideo (1981); Lambert et al. (1997); Poupelin et al. (1978). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of benzaldehyde (10 mmol), 5, 5-dimethyl-1,3-cyclohexanedione (2. 20 mmol) were mixed along with 20 ml of ethanol, to that ammonium acetate (10 mmol) was added and refluxed on waterbath for about 1 h. The progress of the reaction was monitored by TLC. After conforming that the reaction got completed, the reaction mixture was allowed to cool to room temperature and left aside for a day. Yellow colour solid crystals were started growing from the mother liquor. It was filtered and washed with diethyl ether to ensure pure crystals [yield: 91%, m.p. 478–480 K].

Refinement top

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(C) for CH, CH2 and Uiso(H) = 1.5Ueq(C) for CH3 groups.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
3,3,6,6-Tetramethyl-9-phenyl-3,4,5,6-tetrahydro-9H-xanthene- 1,8(2H,7H)-dione top
Crystal data top
C23H26O3F(000) = 752
Mr = 350.44Dx = 1.195 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2500 reflections
a = 6.0562 (5) Åθ = 2–27°
b = 19.7680 (18) ŵ = 0.08 mm1
c = 16.4325 (13) ÅT = 293 K
β = 97.924 (3)°Needle, colourless
V = 1948.5 (3) Å30.17 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4284 independent reflections
Radiation source: fine-focus sealed tube2825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 57
Tmin = 0.987, Tmax = 0.992k = 2525
11861 measured reflectionsl = 2112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.1411P]
where P = (Fo2 + 2Fc2)/3
4284 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C23H26O3V = 1948.5 (3) Å3
Mr = 350.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0562 (5) ŵ = 0.08 mm1
b = 19.7680 (18) ÅT = 293 K
c = 16.4325 (13) Å0.17 × 0.15 × 0.11 mm
β = 97.924 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4284 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2825 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.992Rint = 0.035
11861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
4284 reflectionsΔρmin = 0.20 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.2342 (3)0.26716 (7)0.39187 (9)0.0364 (4)
C30.0380 (2)0.27207 (7)0.34340 (9)0.0353 (3)
C40.0306 (3)0.22377 (7)0.27309 (9)0.0363 (4)
H40.18660.21100.27410.044*
C50.1110 (3)0.16067 (8)0.28674 (9)0.0379 (4)
C60.3004 (3)0.15872 (7)0.33973 (9)0.0390 (4)
C70.3232 (3)0.31533 (8)0.45793 (9)0.0424 (4)
H7A0.48110.32200.45620.051*
H7B0.30680.29560.51080.051*
C80.2064 (3)0.38413 (8)0.45065 (10)0.0450 (4)
C90.0457 (3)0.37197 (10)0.43150 (11)0.0544 (5)
H9A0.09700.35160.47920.065*
H9B0.11990.41530.42210.065*
C100.1139 (3)0.32744 (9)0.35821 (10)0.0447 (4)
C110.0384 (3)0.09875 (8)0.24133 (10)0.0479 (4)
C120.1983 (4)0.03983 (9)0.24839 (11)0.0607 (5)
H12A0.29870.04520.20770.073*
H12B0.11410.00140.23550.073*
C130.3369 (3)0.03208 (8)0.33293 (10)0.0497 (4)
C140.4530 (3)0.09951 (8)0.35552 (11)0.0504 (4)
H14A0.51420.09880.41330.060*
H14B0.57610.10480.32400.060*
C150.0128 (3)0.25771 (7)0.19070 (9)0.0360 (4)
C160.1833 (3)0.28868 (9)0.17640 (10)0.0457 (4)
H160.30730.28740.21670.055*
C170.1970 (3)0.32159 (9)0.10281 (11)0.0534 (5)
H170.32970.34210.09390.064*
C180.0143 (4)0.32390 (9)0.04283 (11)0.0562 (5)
H180.02280.34650.00630.067*
C190.1807 (3)0.29273 (10)0.05584 (11)0.0601 (5)
H190.30390.29390.01530.072*
C200.1939 (3)0.25964 (9)0.12930 (10)0.0495 (4)
H200.32610.23840.13750.059*
C210.2861 (3)0.42570 (9)0.38171 (13)0.0613 (5)
H21A0.21370.46900.37830.092*
H21B0.25020.40220.33050.092*
H21C0.44460.43190.39310.092*
C220.2621 (4)0.42158 (12)0.53235 (13)0.0775 (7)
H22A0.42100.42410.54670.116*
H22B0.19900.39770.57450.116*
H22C0.20120.46650.52710.116*
C230.5131 (4)0.02346 (10)0.32996 (14)0.0785 (7)
H23A0.44050.06540.31360.118*
H23B0.59820.02850.38340.118*
H23C0.61060.01110.29100.118*
C240.1837 (4)0.01311 (11)0.39644 (13)0.0756 (6)
H24A0.10960.02880.38080.113*
H24B0.07480.04810.39870.113*
H24C0.27100.00820.44950.113*
O10.37769 (18)0.21342 (5)0.38742 (7)0.0448 (3)
O20.2918 (2)0.33452 (7)0.31414 (8)0.0672 (4)
O30.1434 (2)0.09604 (6)0.19873 (9)0.0699 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0412 (9)0.0298 (8)0.0381 (8)0.0020 (7)0.0052 (7)0.0017 (6)
C30.0360 (8)0.0329 (8)0.0367 (8)0.0003 (7)0.0043 (6)0.0007 (6)
C40.0323 (8)0.0352 (8)0.0397 (8)0.0005 (7)0.0007 (6)0.0004 (6)
C50.0453 (9)0.0316 (8)0.0358 (8)0.0009 (7)0.0018 (7)0.0005 (6)
C60.0431 (9)0.0298 (8)0.0428 (8)0.0002 (7)0.0018 (7)0.0019 (7)
C70.0490 (10)0.0378 (9)0.0388 (8)0.0017 (8)0.0003 (7)0.0023 (7)
C80.0460 (10)0.0368 (9)0.0524 (10)0.0014 (8)0.0074 (8)0.0094 (7)
C90.0492 (11)0.0530 (11)0.0636 (11)0.0044 (9)0.0172 (9)0.0163 (9)
C100.0398 (9)0.0451 (10)0.0501 (9)0.0030 (8)0.0096 (8)0.0026 (8)
C110.0638 (12)0.0382 (9)0.0386 (9)0.0004 (8)0.0042 (8)0.0007 (7)
C120.0880 (15)0.0391 (10)0.0497 (10)0.0125 (10)0.0097 (10)0.0101 (8)
C130.0689 (12)0.0319 (9)0.0455 (9)0.0069 (8)0.0020 (8)0.0009 (7)
C140.0518 (10)0.0384 (9)0.0579 (10)0.0084 (8)0.0028 (8)0.0019 (8)
C150.0395 (8)0.0305 (8)0.0363 (8)0.0027 (7)0.0006 (6)0.0030 (6)
C160.0452 (10)0.0467 (10)0.0440 (9)0.0038 (8)0.0018 (7)0.0049 (8)
C170.0653 (12)0.0435 (10)0.0540 (10)0.0106 (9)0.0178 (9)0.0038 (8)
C180.0869 (15)0.0412 (10)0.0406 (9)0.0031 (10)0.0093 (9)0.0046 (8)
C190.0665 (13)0.0629 (12)0.0457 (10)0.0049 (11)0.0113 (9)0.0072 (9)
C200.0447 (10)0.0511 (11)0.0491 (10)0.0035 (8)0.0065 (8)0.0037 (8)
C210.0562 (12)0.0397 (10)0.0881 (14)0.0017 (9)0.0101 (10)0.0126 (10)
C220.0799 (16)0.0678 (14)0.0827 (15)0.0012 (12)0.0036 (12)0.0377 (12)
C230.1014 (17)0.0442 (11)0.0823 (15)0.0268 (12)0.0138 (13)0.0109 (10)
C240.0986 (17)0.0577 (13)0.0692 (13)0.0073 (12)0.0070 (12)0.0173 (10)
O10.0426 (6)0.0322 (6)0.0551 (7)0.0053 (5)0.0092 (5)0.0062 (5)
O20.0462 (8)0.0734 (10)0.0784 (9)0.0206 (7)0.0042 (7)0.0149 (7)
O30.0744 (10)0.0486 (8)0.0766 (9)0.0028 (7)0.0251 (8)0.0129 (7)
Geometric parameters (Å, º) top
C2—C31.340 (2)C13—C241.536 (3)
C2—O11.3809 (17)C13—C231.536 (3)
C2—C71.488 (2)C14—H14A0.9700
C3—C101.471 (2)C14—H14B0.9700
C3—C41.512 (2)C15—C201.384 (2)
C4—C51.513 (2)C15—C161.385 (2)
C4—C151.528 (2)C16—C171.386 (2)
C4—H40.9800C16—H160.9300
C5—C61.341 (2)C17—C181.377 (3)
C5—C111.469 (2)C17—H170.9300
C6—O11.3788 (18)C18—C191.375 (3)
C6—C141.492 (2)C18—H180.9300
C7—C81.530 (2)C19—C201.385 (2)
C7—H7A0.9700C19—H190.9300
C7—H7B0.9700C20—H200.9300
C8—C221.529 (2)C21—H21A0.9600
C8—C211.531 (2)C21—H21B0.9600
C8—C91.534 (2)C21—H21C0.9600
C9—C101.503 (2)C22—H22A0.9600
C9—H9A0.9700C22—H22B0.9600
C9—H9B0.9700C22—H22C0.9600
C10—O21.221 (2)C23—H23A0.9600
C11—O31.222 (2)C23—H23B0.9600
C11—C121.509 (2)C23—H23C0.9600
C12—C131.529 (2)C24—H24A0.9600
C12—H12A0.9700C24—H24B0.9600
C12—H12B0.9700C24—H24C0.9600
C13—C141.529 (2)
C3—C2—O1122.50 (13)C14—C13—C23109.43 (16)
C3—C2—C7126.13 (14)C24—C13—C23109.54 (17)
O1—C2—C7111.33 (13)C6—C14—C13112.88 (14)
C2—C3—C10118.61 (14)C6—C14—H14A109.0
C2—C3—C4122.44 (13)C13—C14—H14A109.0
C10—C3—C4118.94 (13)C6—C14—H14B109.0
C3—C4—C5108.46 (12)C13—C14—H14B109.0
C3—C4—C15110.74 (12)H14A—C14—H14B107.8
C5—C4—C15112.66 (12)C20—C15—C16118.41 (14)
C3—C4—H4108.3C20—C15—C4120.80 (14)
C5—C4—H4108.3C16—C15—C4120.77 (13)
C15—C4—H4108.3C15—C16—C17120.76 (16)
C6—C5—C11118.38 (14)C15—C16—H16119.6
C6—C5—C4122.44 (13)C17—C16—H16119.6
C11—C5—C4119.17 (14)C18—C17—C16120.09 (17)
C5—C6—O1122.64 (13)C18—C17—H17120.0
C5—C6—C14126.09 (14)C16—C17—H17120.0
O1—C6—C14111.27 (13)C19—C18—C17119.77 (16)
C2—C7—C8113.26 (13)C19—C18—H18120.1
C2—C7—H7A108.9C17—C18—H18120.1
C8—C7—H7A108.9C18—C19—C20120.08 (17)
C2—C7—H7B108.9C18—C19—H19120.0
C8—C7—H7B108.9C20—C19—H19120.0
H7A—C7—H7B107.7C15—C20—C19120.88 (17)
C22—C8—C7108.54 (15)C15—C20—H20119.6
C22—C8—C21109.63 (16)C19—C20—H20119.6
C7—C8—C21110.20 (14)C8—C21—H21A109.5
C22—C8—C9110.41 (15)C8—C21—H21B109.5
C7—C8—C9108.23 (14)H21A—C21—H21B109.5
C21—C8—C9109.80 (15)C8—C21—H21C109.5
C10—C9—C8114.33 (14)H21A—C21—H21C109.5
C10—C9—H9A108.7H21B—C21—H21C109.5
C8—C9—H9A108.7C8—C22—H22A109.5
C10—C9—H9B108.7C8—C22—H22B109.5
C8—C9—H9B108.7H22A—C22—H22B109.5
H9A—C9—H9B107.6C8—C22—H22C109.5
O2—C10—C3120.52 (15)H22A—C22—H22C109.5
O2—C10—C9122.07 (15)H22B—C22—H22C109.5
C3—C10—C9117.34 (15)C13—C23—H23A109.5
O3—C11—C5120.72 (16)C13—C23—H23B109.5
O3—C11—C12121.90 (15)H23A—C23—H23B109.5
C5—C11—C12117.37 (15)C13—C23—H23C109.5
C11—C12—C13114.43 (14)H23A—C23—H23C109.5
C11—C12—H12A108.7H23B—C23—H23C109.5
C13—C12—H12A108.7C13—C24—H24A109.5
C11—C12—H12B108.7C13—C24—H24B109.5
C13—C12—H12B108.7H24A—C24—H24B109.5
H12A—C12—H12B107.6C13—C24—H24C109.5
C12—C13—C14108.04 (14)H24A—C24—H24C109.5
C12—C13—C24109.55 (17)H24B—C24—H24C109.5
C14—C13—C24110.41 (15)C6—O1—C2117.81 (11)
C12—C13—C23109.85 (14)
O1—C2—C3—C10173.83 (13)C6—C5—C11—O3172.63 (16)
C7—C2—C3—C103.8 (2)C4—C5—C11—O36.6 (2)
O1—C2—C3—C47.5 (2)C6—C5—C11—C128.5 (2)
C7—C2—C3—C4174.82 (14)C4—C5—C11—C12172.31 (15)
C2—C3—C4—C519.19 (19)O3—C11—C12—C13145.42 (19)
C10—C3—C4—C5162.15 (13)C5—C11—C12—C1335.7 (2)
C2—C3—C4—C15104.92 (16)C11—C12—C13—C1453.6 (2)
C10—C3—C4—C1573.74 (17)C11—C12—C13—C2466.7 (2)
C3—C4—C5—C616.4 (2)C11—C12—C13—C23172.93 (18)
C15—C4—C5—C6106.60 (16)C5—C6—C14—C1323.1 (2)
C3—C4—C5—C11162.83 (13)O1—C6—C14—C13156.85 (14)
C15—C4—C5—C1174.21 (18)C12—C13—C14—C646.2 (2)
C11—C5—C6—O1177.46 (14)C24—C13—C14—C673.61 (19)
C4—C5—C6—O11.7 (2)C23—C13—C14—C6165.75 (16)
C11—C5—C6—C142.4 (2)C3—C4—C15—C20125.34 (15)
C4—C5—C6—C14178.36 (15)C5—C4—C15—C20112.98 (16)
C3—C2—C7—C817.9 (2)C3—C4—C15—C1653.10 (19)
O1—C2—C7—C8164.25 (13)C5—C4—C15—C1668.58 (18)
C2—C7—C8—C22164.25 (16)C20—C15—C16—C170.9 (2)
C2—C7—C8—C2175.68 (18)C4—C15—C16—C17177.63 (15)
C2—C7—C8—C944.40 (18)C15—C16—C17—C180.1 (3)
C22—C8—C9—C10172.24 (16)C16—C17—C18—C190.8 (3)
C7—C8—C9—C1053.6 (2)C17—C18—C19—C200.6 (3)
C21—C8—C9—C1066.8 (2)C16—C15—C20—C191.1 (2)
C2—C3—C10—O2178.27 (16)C4—C15—C20—C19177.38 (16)
C4—C3—C10—O20.4 (2)C18—C19—C20—C150.4 (3)
C2—C3—C10—C94.7 (2)C5—C6—O1—C212.5 (2)
C4—C3—C10—C9176.63 (14)C14—C6—O1—C2167.45 (13)
C8—C9—C10—O2148.28 (17)C3—C2—O1—C69.5 (2)
C8—C9—C10—C334.7 (2)C7—C2—O1—C6168.44 (13)

Experimental details

Crystal data
Chemical formulaC23H26O3
Mr350.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.0562 (5), 19.7680 (18), 16.4325 (13)
β (°) 97.924 (3)
V3)1948.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.17 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.987, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
11861, 4284, 2825
Rint0.035
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.138, 1.03
No. of reflections4284
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the DST for the FIST programme.

References

First citationBruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHideo, T. (1981). Jpn Tokkyo Koho JP 56 005 480.  Google Scholar
First citationLambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Intl Appl. WO 9706178.  Google Scholar
First citationPoupelin, J. P., Saint-Rut, G., Foussard-Blanpin, O., Narcisse, G., Uchida- Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds