organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,3,5,6-Tetra­methyl­benz­yl­oxy)-1H-benzotriazole

aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamilnadu, India, bDepartment of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India, cDepartment of Physics, Popes College, Sawyerpuram 628 251, Tamilnadu, India, and dInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 20 March 2009; accepted 24 March 2009; online 28 March 2009)

In the title compound, C17H19N3O, the benzotriazole ring is essentially planar, with a maximum deviation of 0.0069 (15) Å. The mean plane of the benzotriazole ring forms a dihedral angle of 13.16 (4)° with the mean plane of the benzene ring. The crystal packing is stabilized by ππ stacking inter­actions, with a centroid–centroid distance of 3.8077 (12) Å, together with weak C—H⋯π inter­actions. Mol­ecules are stacked along the a axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the biological activity of N-oxide and benzotriazole derivatives, see: Katarzyna et al. (2005[Katarzyna, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2005). Bioorg Med. Chem. 13, 3601-3616.]); Sarala et al. (2007[Sarala, G., Swamy, S. N., Prabhuswamy, B., Andalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2007). Anal. Sci. 23, 25-26.]). For applications of benzotriazole, see: Kopec et al. (2008[Kopec, E. A., Zwolska, Z. & Kazimierczuk, A. O. Z. (2008). Acta Pol. Pharm. Drug Res. 65, 435-439.]); Krawczyk & Gdaniec (2005[Krawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o2967-o2969.]); Smith et al. (2001[Smith, G., Bottle, S. E., Reid, D. A., Schweinsberg, D. P. & Bott, R. C. (2001). Acta Cryst. E57, o531-o532.]); Sha et al. (1996[Sha, G., Wang, W. & Ren, T. (1996). Mocha Xuebao, 16, 344—350.]). For 1-hydroxy­benzotriazole, see: Anderson et al. (1963[Anderson, G. W., Zimmerman, J. E. & Calahan, F. M. (1963). J. Am. Chem. Soc. 85, 3039-3039.]); Bosch et al. (1983[Bosch, R., Jung, G. & Winter, W. (1983). Acta Cryst. C39, 1089-1092.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19N3O

  • Mr = 281.35

  • Monoclinic, P 21 /c

  • a = 4.9737 (8) Å

  • b = 26.3838 (18) Å

  • c = 11.490 (2) Å

  • β = 105.977 (7)°

  • V = 1449.5 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 193 K

  • 0.51 × 0.51 × 0.45 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Draeger & Gattow, 1971[Draeger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.731, Tmax = 0.759

  • 2861 measured reflections

  • 2729 independent reflections

  • 2578 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections frequency: 60 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.08

  • 2729 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18CCg3i 0.98 2.85 3.6701 (18) 141
C20—H20BCg3ii 0.98 2.80 3.682 (2) 150
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z. Cg3 is the centroid of the C12–C17 ring.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: CORINC (Draeger & Gattow, 1971[Draeger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzotriazole derivatives show biological activities such as anti-inflammatory, diuretic, antiviral and antihypertensive agents (Katarzyna et al., 2005; Sarala et al., 2007). It is used as a corrosion inhibitor, antifreeze agent, ultraviolet light stabilizer for plastics and as an antifoggant in photography (Krawczyk & Gdaniec, 2005; Smith et al., 2001). N-aryloxy derivatives of benzotriazoles have antimycobacterial activity (Kopec et al., 2008). Benzotriazole possessing three vicinal N atoms, is used as an antifouling and antiwear reagent (Sha et al., 1996). 1-Hydroxybenzotriazole is widely being used as a reagent for peptide synthesis (Anderson et al., 1963). The crystal structure of benzotriazole 1-oxide has been reported (Bosch et al., 1983). Due to the above mentioned applications of benzotriazole we have synthesized and report here the crystal structure of the title compound (I).

The asymmetric unit of (I) comprises of one molecule of the title compound (Fig 1). The bond lengths and angles are found to have normal values (Allen et al., 1987). The benzotriazole ring is essentially planar with the maximum deviation from planarity being 0.0069 (15) Å for atom N2. The mean plane of the benzotriazole ring (N1—N3/C4—C9) forms a dihedral angle of 13.16 (4)° with the mean plane of the phenyl ring (C12—C17).

The crystal packing is stabilized by ππ stacking interactions [Cg1—Cg2i= of 3.8077 (12) Å; Cg1: (N1—N3/C4—C9); Cg2:(C4—C9): symmetry code:(i) -1+x, y, z] together with weak C—H···π interactions. Molecules are stacked along the a axis (Fig.2).

Related literature top

For bond-length data, see: Allen et al.(1987). For the biological activity of N-oxide and benzotriazole derivatives, see: Katarzyna et al. (2005); Sarala et al. (2007). For applications of benzotriazole, see: Kopec et al. (2008); Krawczyk & Gdaniec (2005); Smith et al. (2001); Sha et al. (1996). For 1-hydroxybenzotriazole, see: Anderson et al. (1963); Bosch et al. (1983). Cg3 is the centroid of the C12–C17 ring.

Experimental top

A mixture of 1-(bromomethyl) 2,3,5,6 tetramethyl benzene (0.227 g, 1 mmol) and sSodium salt of 1-hydroxybenzotriazole (0.1571 mmol) in ethanol (10 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried. The compound was dissolved in ethanol and on slow evaporation crystals suitable for x-ray diffraction are formed.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.95 Å (aromatic); C—H = 0.98 (methyl) or C—H = 0.99 Å (methylene) and refined using a riding model with, Uiso(H) = 1.2Uequ(Caromatic, methylene) and 1.5Uequ(Cmethyl). A rotating group model was used for the methyl groups.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: CORINC (Draeger & Gattow, 1971); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. Molecules are stacked along the a axis.
1-(2,3,5,6-Tetramethylbenzyloxy)-1H-benzotriazole top
Crystal data top
C17H19N3OF(000) = 600
Mr = 281.35Dx = 1.289 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 4.9737 (8) Åθ = 65–70°
b = 26.3838 (18) ŵ = 0.65 mm1
c = 11.490 (2) ÅT = 193 K
β = 105.977 (7)°Block, colourless
V = 1449.5 (4) Å30.51 × 0.51 × 0.45 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2578 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.050
Graphite monochromatorθmax = 69.9°, θmin = 3.4°
ω/2θ scansh = 56
Absorption correction: ψ scan
(CORINC; Draeger & Gattow, 1971)
k = 032
Tmin = 0.731, Tmax = 0.759l = 130
2861 measured reflections3 standard reflections every 60 min
2729 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.687P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.002
2729 reflectionsΔρmax = 0.27 e Å3
195 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (6)
Crystal data top
C17H19N3OV = 1449.5 (4) Å3
Mr = 281.35Z = 4
Monoclinic, P21/cCu Kα radiation
a = 4.9737 (8) ŵ = 0.65 mm1
b = 26.3838 (18) ÅT = 193 K
c = 11.490 (2) Å0.51 × 0.51 × 0.45 mm
β = 105.977 (7)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2578 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Draeger & Gattow, 1971)
Rint = 0.050
Tmin = 0.731, Tmax = 0.7593 standard reflections every 60 min
2861 measured reflections intensity decay: 1%
2729 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
2729 reflectionsΔρmin = 0.23 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4809 (3)0.32620 (5)0.62810 (11)0.0311 (3)
N20.3357 (3)0.28455 (5)0.63903 (13)0.0379 (4)
N30.4680 (3)0.26168 (5)0.73894 (13)0.0395 (4)
C40.7028 (3)0.28997 (6)0.79380 (14)0.0321 (4)
C50.9114 (4)0.28229 (6)0.90326 (15)0.0374 (4)
H50.90650.25390.95360.045*
C61.1208 (4)0.31732 (7)0.93407 (15)0.0411 (4)
H61.26520.31311.00720.049*
C71.1281 (4)0.35962 (7)0.86002 (16)0.0412 (4)
H71.27790.38310.88490.049*
C80.9264 (3)0.36815 (6)0.75324 (15)0.0348 (4)
H80.93170.39670.70360.042*
C90.7132 (3)0.33208 (6)0.72239 (13)0.0292 (4)
O100.3754 (2)0.35998 (4)0.53578 (9)0.0327 (3)
C110.4691 (4)0.34745 (6)0.42841 (14)0.0328 (4)
H11A0.39040.31450.39390.039*
H11B0.67570.34550.44970.039*
C120.3636 (3)0.38958 (6)0.33973 (13)0.0286 (4)
C130.5113 (3)0.43544 (6)0.35296 (13)0.0296 (4)
C140.4080 (3)0.47548 (6)0.27302 (14)0.0316 (4)
C150.1584 (3)0.46843 (6)0.18303 (14)0.0335 (4)
H150.08690.49570.12940.040*
C160.0095 (3)0.42330 (7)0.16838 (13)0.0318 (4)
C170.1116 (3)0.38296 (6)0.24756 (13)0.0299 (4)
C180.7813 (3)0.44365 (7)0.45103 (15)0.0389 (4)
H18A0.84660.41130.49060.058*
H18B0.74920.46760.51100.058*
H18C0.92310.45740.41510.058*
C190.5633 (4)0.52490 (7)0.28165 (18)0.0424 (4)
H19A0.74510.51900.26640.064*
H19B0.59170.53920.36280.064*
H19C0.45410.54870.22140.064*
C200.2599 (4)0.41887 (8)0.06843 (15)0.0416 (4)
H20A0.30330.45150.02680.062*
H20B0.41200.40930.10310.062*
H20C0.23930.39290.01060.062*
C210.0499 (4)0.33394 (7)0.23361 (17)0.0399 (4)
H21A0.07170.32350.31240.060*
H21B0.05180.30760.20290.060*
H21C0.23480.33880.17650.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0347 (7)0.0312 (7)0.0230 (6)0.0011 (5)0.0005 (5)0.0022 (5)
N20.0426 (8)0.0353 (8)0.0313 (7)0.0056 (6)0.0026 (6)0.0011 (6)
N30.0478 (9)0.0343 (8)0.0321 (7)0.0046 (6)0.0038 (6)0.0008 (6)
C40.0364 (8)0.0301 (8)0.0273 (8)0.0026 (6)0.0048 (6)0.0007 (6)
C50.0464 (10)0.0351 (9)0.0268 (8)0.0078 (7)0.0035 (7)0.0042 (6)
C60.0385 (9)0.0508 (10)0.0275 (8)0.0071 (8)0.0018 (7)0.0006 (7)
C70.0345 (9)0.0477 (10)0.0355 (9)0.0059 (7)0.0002 (7)0.0041 (7)
C80.0370 (9)0.0347 (8)0.0298 (8)0.0028 (7)0.0044 (7)0.0011 (6)
C90.0301 (8)0.0318 (8)0.0233 (7)0.0041 (6)0.0033 (6)0.0019 (6)
O100.0379 (6)0.0353 (6)0.0213 (5)0.0086 (5)0.0021 (4)0.0026 (4)
C110.0380 (9)0.0338 (8)0.0248 (8)0.0063 (7)0.0055 (6)0.0015 (6)
C120.0305 (8)0.0325 (8)0.0222 (7)0.0049 (6)0.0062 (6)0.0013 (6)
C130.0281 (8)0.0357 (8)0.0240 (7)0.0018 (6)0.0057 (6)0.0040 (6)
C140.0339 (8)0.0331 (8)0.0295 (8)0.0019 (6)0.0114 (6)0.0019 (6)
C150.0349 (8)0.0374 (9)0.0275 (8)0.0089 (7)0.0077 (6)0.0051 (6)
C160.0293 (8)0.0428 (9)0.0219 (7)0.0046 (7)0.0048 (6)0.0019 (6)
C170.0305 (8)0.0351 (8)0.0237 (7)0.0011 (6)0.0070 (6)0.0040 (6)
C180.0338 (9)0.0460 (10)0.0320 (9)0.0027 (7)0.0009 (7)0.0053 (7)
C190.0456 (10)0.0354 (9)0.0483 (10)0.0028 (8)0.0163 (8)0.0016 (8)
C200.0344 (9)0.0580 (11)0.0266 (8)0.0056 (8)0.0012 (7)0.0019 (7)
C210.0380 (9)0.0401 (9)0.0403 (9)0.0046 (7)0.0086 (7)0.0045 (7)
Geometric parameters (Å, º) top
N1—N21.3398 (19)C13—C141.401 (2)
N1—C91.358 (2)C13—C181.512 (2)
N1—O101.3741 (16)C14—C151.392 (2)
N2—N31.304 (2)C14—C191.505 (2)
N3—C41.383 (2)C15—C161.388 (2)
C4—C91.390 (2)C15—H150.9500
C4—C51.407 (2)C16—C171.401 (2)
C5—C61.364 (3)C16—C201.510 (2)
C5—H50.9500C17—C211.508 (2)
C6—C71.410 (3)C18—H18A0.9800
C6—H60.9500C18—H18B0.9800
C7—C81.373 (2)C18—H18C0.9800
C7—H70.9500C19—H19A0.9800
C8—C91.396 (2)C19—H19B0.9800
C8—H80.9500C19—H19C0.9800
O10—C111.4714 (19)C20—H20A0.9800
C11—C121.501 (2)C20—H20B0.9800
C11—H11A0.9900C20—H20C0.9800
C11—H11B0.9900C21—H21A0.9800
C12—C131.402 (2)C21—H21B0.9800
C12—C171.412 (2)C21—H21C0.9800
N2—N1—C9112.41 (13)C15—C14—C13118.49 (15)
N2—N1—O10120.21 (12)C15—C14—C19120.09 (15)
C9—N1—O10127.02 (13)C13—C14—C19121.41 (15)
N3—N2—N1107.93 (13)C16—C15—C14122.80 (15)
N2—N3—C4108.04 (14)C16—C15—H15118.6
N3—C4—C9109.04 (14)C14—C15—H15118.6
N3—C4—C5130.67 (16)C15—C16—C17119.15 (14)
C9—C4—C5120.29 (15)C15—C16—C20119.39 (15)
C6—C5—C4117.17 (16)C17—C16—C20121.45 (16)
C6—C5—H5121.4C16—C17—C12118.77 (15)
C4—C5—H5121.4C16—C17—C21119.69 (14)
C5—C6—C7121.62 (16)C12—C17—C21121.53 (14)
C5—C6—H6119.2C13—C18—H18A109.5
C7—C6—H6119.2C13—C18—H18B109.5
C8—C7—C6122.35 (16)H18A—C18—H18B109.5
C8—C7—H7118.8C13—C18—H18C109.5
C6—C7—H7118.8H18A—C18—H18C109.5
C7—C8—C9115.62 (15)H18B—C18—H18C109.5
C7—C8—H8122.2C14—C19—H19A109.5
C9—C8—H8122.2C14—C19—H19B109.5
N1—C9—C4102.58 (14)H19A—C19—H19B109.5
N1—C9—C8134.47 (15)C14—C19—H19C109.5
C4—C9—C8122.95 (15)H19A—C19—H19C109.5
N1—O10—C11111.09 (11)H19B—C19—H19C109.5
O10—C11—C12105.69 (12)C16—C20—H20A109.5
O10—C11—H11A110.6C16—C20—H20B109.5
C12—C11—H11A110.6H20A—C20—H20B109.5
O10—C11—H11B110.6C16—C20—H20C109.5
C12—C11—H11B110.6H20A—C20—H20C109.5
H11A—C11—H11B108.7H20B—C20—H20C109.5
C13—C12—C17121.24 (14)C17—C21—H21A109.5
C13—C12—C11119.37 (14)C17—C21—H21B109.5
C17—C12—C11119.33 (14)H21A—C21—H21B109.5
C14—C13—C12119.53 (14)C17—C21—H21C109.5
C14—C13—C18118.07 (15)H21A—C21—H21C109.5
C12—C13—C18122.39 (14)H21B—C21—H21C109.5
C9—N1—N2—N30.72 (19)O10—C11—C12—C1380.40 (17)
O10—N1—N2—N3174.26 (13)O10—C11—C12—C1797.09 (16)
N1—N2—N3—C40.67 (18)C17—C12—C13—C140.3 (2)
N2—N3—C4—C90.41 (19)C11—C12—C13—C14177.69 (14)
N2—N3—C4—C5179.01 (17)C17—C12—C13—C18179.83 (14)
N3—C4—C5—C6179.99 (17)C11—C12—C13—C182.4 (2)
C9—C4—C5—C60.6 (2)C12—C13—C14—C150.6 (2)
C4—C5—C6—C70.3 (3)C18—C13—C14—C15179.49 (14)
C5—C6—C7—C80.1 (3)C12—C13—C14—C19178.35 (14)
C6—C7—C8—C90.1 (3)C18—C13—C14—C191.6 (2)
N2—N1—C9—C40.44 (17)C13—C14—C15—C160.7 (2)
O10—N1—C9—C4173.45 (14)C19—C14—C15—C16178.23 (15)
N2—N1—C9—C8179.69 (17)C14—C15—C16—C170.5 (2)
O10—N1—C9—C86.7 (3)C14—C15—C16—C20179.92 (15)
N3—C4—C9—N10.01 (17)C15—C16—C17—C120.1 (2)
C5—C4—C9—N1179.51 (15)C20—C16—C17—C12179.53 (14)
N3—C4—C9—C8179.90 (15)C15—C16—C17—C21179.26 (14)
C5—C4—C9—C80.6 (2)C20—C16—C17—C210.2 (2)
C7—C8—C9—N1179.94 (17)C13—C12—C17—C160.0 (2)
C7—C8—C9—C40.2 (2)C11—C12—C17—C16177.45 (13)
N2—N1—O10—C1191.18 (17)C13—C12—C17—C21179.36 (14)
C9—N1—O10—C1196.30 (17)C11—C12—C17—C211.9 (2)
N1—O10—C11—C12174.71 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···Cg3i0.982.853.6701 (18)141
C20—H20B···Cg3ii0.982.803.682 (2)150
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H19N3O
Mr281.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)4.9737 (8), 26.3838 (18), 11.490 (2)
β (°) 105.977 (7)
V3)1449.5 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.51 × 0.51 × 0.45
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CORINC; Draeger & Gattow, 1971)
Tmin, Tmax0.731, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
2861, 2729, 2578
Rint0.050
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.08
No. of reflections2729
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CORINC (Draeger & Gattow, 1971), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···Cg3i0.982.853.6701 (18)141
C20—H20B···Cg3ii0.982.803.682 (2)150
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, G. W., Zimmerman, J. E. & Calahan, F. M. (1963). J. Am. Chem. Soc. 85, 3039–3039.  CrossRef CAS Web of Science Google Scholar
First citationBosch, R., Jung, G. & Winter, W. (1983). Acta Cryst. C39, 1089–1092.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDraeger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKatarzyna, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2005). Bioorg Med. Chem. 13, 3601–3616.  Google Scholar
First citationKopec, E. A., Zwolska, Z. & Kazimierczuk, A. O. Z. (2008). Acta Pol. Pharm. Drug Res. 65, 435–439.  Google Scholar
First citationKrawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o2967–o2969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarala, G., Swamy, S. N., Prabhuswamy, B., Andalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2007). Anal. Sci. 23, 25–26.  Web of Science PubMed Google Scholar
First citationSha, G., Wang, W. & Ren, T. (1996). Mocha Xuebao, 16, 344—350.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Bottle, S. E., Reid, D. A., Schweinsberg, D. P. & Bott, R. C. (2001). Acta Cryst. E57, o531–o532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds