metal-organic compounds
Aquadinitrato(quioxalino[2,3-f][1,10]phenanthroline)nickel(II) monohydrate
aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: gyhxxiaoxin@163.com
In the crystal of the title compound, [Ni(NO3)2(C18H10N4)(H2O)]·H2O, the NiII ion is coordinated in a distorted octahedral geometry by two N atoms of the 1,10-phenanthroline moiety of the ligand, three O atoms from two nitrate anions and an O atom from one water molecule. O—H⋯O hydrogen bonds between the coordinated and the solvent water molecules and between these water molecules and the nitrate O atoms help to establish the crystal packing.
Related literature
For transition metal complexes and their potential applications as functional materials and enzymes, see: Noro et al. (2000); Yaghi et al. (1998). For quinoxaline derivates and 1,10-phenanthroline as electron-transporting materials, see: Ambroise & Maiya (2000); Lo & Hui (2005); Thomas et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809011441/at2754sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809011441/at2754Isup2.hkl
A solution of 1,10-phenanthroline-5,6-dione (2.1 g, 0.01 mol) in ethanol (30 ml) was added to a stirred solution of benzene-1,2-diamine (1.08 g, 0.01 mol) in ethanol (80 ml) at 293 K. The solution was stirred at room temperature for 12 h, then the 10 ml of NaOH solution (1 M) was added to, and the two phase mixture was well stirred for 8 min. The mixture was filtered. The residue was washed with 30 ml CH3CH2OCH2CH3. The solid product was dissolved in 90 ml ethanol, then a solution of Ni(N03)2, (2.55 g, 0.01 mol) in H2O (20 ml) was added and the resulting solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After two weeks, green laths and prisms of (I) were isolated.
Water H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. |
[Ni(NO3)2(C18H10N4)(H2O)]·H2O | F(000) = 1024 |
Mr = 501.04 | Dx = 1.739 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3338 reflections |
a = 7.300 (3) Å | θ = 1.5–25.0° |
b = 27.872 (12) Å | µ = 1.08 mm−1 |
c = 9.950 (4) Å | T = 293 K |
β = 109.005 (6)° | Prism, green |
V = 1914.1 (14) Å3 | 0.24 × 0.21 × 0.19 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 3338 independent reflections |
Radiation source: fine-focus sealed tube | 2255 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −8→8 |
Tmin = 0.792, Tmax = 0.805 | k = −29→33 |
12703 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0654P)2] where P = (Fo2 + 2Fc2)/3 |
3338 reflections | (Δ/σ)max < 0.001 |
314 parameters | Δρmax = 1.02 e Å−3 |
4 restraints | Δρmin = −0.35 e Å−3 |
[Ni(NO3)2(C18H10N4)(H2O)]·H2O | V = 1914.1 (14) Å3 |
Mr = 501.04 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.300 (3) Å | µ = 1.08 mm−1 |
b = 27.872 (12) Å | T = 293 K |
c = 9.950 (4) Å | 0.24 × 0.21 × 0.19 mm |
β = 109.005 (6)° |
Bruker SMART CCD area-detector diffractometer | 3338 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2255 reflections with I > 2σ(I) |
Tmin = 0.792, Tmax = 0.805 | Rint = 0.062 |
12703 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 4 restraints |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 1.02 e Å−3 |
3338 reflections | Δρmin = −0.35 e Å−3 |
314 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1W | 0.4569 (6) | 0.23839 (11) | 0.3617 (4) | 0.0500 (8) | |
O2W | −0.2513 (6) | 0.25558 (15) | 0.2685 (5) | 0.0748 (11) | |
H1WA | 0.355 (5) | 0.246 (2) | 0.298 (5) | 0.11 (2)* | |
H2WA | −0.140 (4) | 0.246 (2) | 0.313 (6) | 0.10 (2)* | |
H2WB | −0.229 (10) | 0.271 (2) | 0.205 (5) | 0.12 (3)* | |
H1WB | 0.559 (5) | 0.2429 (19) | 0.343 (6) | 0.08 (2)* | |
C1 | 0.2027 (6) | −0.07484 (15) | 0.0816 (4) | 0.0381 (10) | |
C2 | 0.1687 (7) | −0.12547 (15) | 0.0792 (5) | 0.0491 (12) | |
H2 | 0.1650 | −0.1412 | 0.1607 | 0.059* | |
C3 | 0.1418 (7) | −0.15036 (16) | −0.0432 (5) | 0.0509 (12) | |
H3 | 0.1195 | −0.1832 | −0.0441 | 0.061* | |
C4 | 0.1467 (6) | −0.12769 (16) | −0.1693 (5) | 0.0473 (11) | |
H4 | 0.1275 | −0.1455 | −0.2518 | 0.057* | |
C5 | 0.1798 (6) | −0.07968 (15) | −0.1691 (4) | 0.0437 (11) | |
H5 | 0.1829 | −0.0648 | −0.2521 | 0.052* | |
C6 | 0.2095 (6) | −0.05199 (15) | −0.0451 (4) | 0.0389 (10) | |
C7 | 0.2656 (6) | 0.02039 (14) | 0.0708 (4) | 0.0367 (10) | |
C8 | 0.3059 (6) | 0.07219 (14) | 0.0721 (4) | 0.0361 (10) | |
C9 | 0.3115 (6) | 0.09755 (15) | −0.0475 (4) | 0.0435 (11) | |
H9 | 0.2845 | 0.0820 | −0.1345 | 0.052* | |
C10 | 0.3567 (7) | 0.14525 (15) | −0.0365 (4) | 0.0448 (11) | |
H10 | 0.3597 | 0.1624 | −0.1159 | 0.054* | |
C11 | 0.3984 (6) | 0.16799 (15) | 0.0953 (4) | 0.0418 (11) | |
H11 | 0.4364 | 0.2000 | 0.1031 | 0.050* | |
C12 | 0.3390 (5) | 0.09756 (13) | 0.1985 (4) | 0.0331 (9) | |
C13 | 0.3222 (5) | 0.07486 (14) | 0.3249 (4) | 0.0325 (9) | |
C14 | 0.3228 (6) | 0.08498 (15) | 0.5558 (4) | 0.0434 (11) | |
H14 | 0.3396 | 0.1046 | 0.6345 | 0.052* | |
C15 | 0.2730 (7) | 0.03711 (15) | 0.5646 (4) | 0.0478 (12) | |
H15 | 0.2554 | 0.0254 | 0.6470 | 0.057* | |
C16 | 0.2501 (6) | 0.00718 (15) | 0.4488 (4) | 0.0435 (11) | |
H16 | 0.2178 | −0.0250 | 0.4524 | 0.052* | |
C17 | 0.2766 (6) | 0.02637 (14) | 0.3261 (4) | 0.0343 (10) | |
C18 | 0.2550 (6) | −0.00271 (14) | 0.1970 (4) | 0.0360 (10) | |
N1 | 0.2418 (5) | −0.00420 (12) | −0.0496 (3) | 0.0386 (8) | |
N2 | 0.2264 (5) | −0.04985 (12) | 0.2022 (3) | 0.0393 (8) | |
N3 | 0.3856 (5) | 0.14541 (11) | 0.2110 (3) | 0.0364 (8) | |
N4 | 0.3473 (5) | 0.10402 (12) | 0.4398 (3) | 0.0371 (8) | |
N5 | 0.8338 (6) | 0.13711 (13) | 0.5559 (4) | 0.0462 (9) | |
N6 | 0.1912 (5) | 0.21527 (13) | 0.5388 (4) | 0.0448 (9) | |
O1 | 0.7783 (5) | 0.10649 (12) | 0.4602 (3) | 0.0641 (10) | |
O2 | 0.9965 (4) | 0.13624 (12) | 0.6460 (4) | 0.0659 (10) | |
O3 | 0.7158 (4) | 0.17099 (11) | 0.5592 (3) | 0.0546 (9) | |
O4 | 0.0965 (5) | 0.20873 (11) | 0.4119 (3) | 0.0591 (9) | |
O5 | 0.3600 (4) | 0.19605 (10) | 0.5873 (3) | 0.0455 (8) | |
O6 | 0.1315 (5) | 0.23972 (12) | 0.6206 (4) | 0.0602 (9) | |
Ni1 | 0.42395 (7) | 0.170749 (17) | 0.40994 (5) | 0.0345 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1W | 0.065 (3) | 0.0339 (19) | 0.049 (2) | −0.0001 (18) | 0.016 (2) | −0.0016 (15) |
O2W | 0.057 (3) | 0.073 (3) | 0.090 (3) | 0.008 (2) | 0.018 (2) | 0.035 (2) |
C1 | 0.041 (2) | 0.033 (2) | 0.043 (2) | −0.0042 (19) | 0.0175 (19) | −0.007 (2) |
C2 | 0.064 (3) | 0.034 (3) | 0.054 (3) | −0.003 (2) | 0.026 (2) | 0.001 (2) |
C3 | 0.062 (3) | 0.029 (2) | 0.067 (3) | −0.008 (2) | 0.029 (3) | −0.011 (2) |
C4 | 0.055 (3) | 0.041 (3) | 0.048 (3) | −0.006 (2) | 0.020 (2) | −0.011 (2) |
C5 | 0.052 (3) | 0.037 (3) | 0.042 (2) | −0.008 (2) | 0.015 (2) | −0.005 (2) |
C6 | 0.038 (2) | 0.034 (3) | 0.044 (2) | −0.0006 (19) | 0.0121 (19) | −0.007 (2) |
C7 | 0.041 (2) | 0.033 (2) | 0.035 (2) | 0.0029 (18) | 0.0112 (18) | −0.0014 (18) |
C8 | 0.042 (2) | 0.031 (2) | 0.035 (2) | 0.0029 (19) | 0.0113 (18) | 0.0000 (18) |
C9 | 0.058 (3) | 0.037 (3) | 0.033 (2) | −0.002 (2) | 0.012 (2) | −0.0036 (19) |
C10 | 0.069 (3) | 0.029 (2) | 0.042 (2) | 0.001 (2) | 0.025 (2) | 0.005 (2) |
C11 | 0.053 (3) | 0.029 (2) | 0.045 (3) | −0.001 (2) | 0.018 (2) | 0.002 (2) |
C12 | 0.035 (2) | 0.026 (2) | 0.037 (2) | 0.0036 (18) | 0.0107 (18) | 0.0009 (18) |
C13 | 0.034 (2) | 0.029 (2) | 0.034 (2) | 0.0008 (18) | 0.0113 (17) | −0.0007 (18) |
C14 | 0.055 (3) | 0.039 (3) | 0.039 (2) | 0.003 (2) | 0.019 (2) | −0.005 (2) |
C15 | 0.071 (3) | 0.035 (3) | 0.043 (2) | 0.000 (2) | 0.027 (2) | 0.002 (2) |
C16 | 0.062 (3) | 0.030 (2) | 0.045 (3) | −0.003 (2) | 0.026 (2) | −0.003 (2) |
C17 | 0.037 (2) | 0.033 (2) | 0.036 (2) | 0.0023 (18) | 0.0162 (18) | −0.0001 (18) |
C18 | 0.040 (2) | 0.030 (2) | 0.038 (2) | 0.0006 (18) | 0.0131 (18) | −0.0015 (19) |
N1 | 0.046 (2) | 0.034 (2) | 0.0349 (19) | −0.0001 (16) | 0.0117 (16) | −0.0026 (16) |
N2 | 0.052 (2) | 0.029 (2) | 0.0410 (19) | 0.0008 (16) | 0.0214 (17) | −0.0016 (16) |
N3 | 0.041 (2) | 0.0288 (19) | 0.041 (2) | −0.0005 (15) | 0.0146 (16) | −0.0008 (16) |
N4 | 0.044 (2) | 0.032 (2) | 0.0355 (19) | 0.0018 (16) | 0.0143 (16) | −0.0030 (16) |
N5 | 0.057 (3) | 0.039 (2) | 0.048 (2) | 0.001 (2) | 0.025 (2) | 0.0066 (19) |
N6 | 0.048 (2) | 0.035 (2) | 0.052 (2) | −0.0032 (18) | 0.018 (2) | −0.0110 (18) |
O1 | 0.084 (3) | 0.055 (2) | 0.056 (2) | 0.0090 (19) | 0.0272 (19) | −0.0098 (18) |
O2 | 0.043 (2) | 0.080 (3) | 0.069 (2) | 0.0116 (18) | 0.0104 (18) | 0.0144 (19) |
O3 | 0.0478 (19) | 0.0411 (19) | 0.068 (2) | 0.0069 (16) | 0.0097 (16) | −0.0122 (16) |
O4 | 0.057 (2) | 0.064 (2) | 0.0475 (19) | 0.0018 (17) | 0.0046 (16) | −0.0121 (16) |
O5 | 0.0441 (18) | 0.0402 (18) | 0.0500 (18) | 0.0038 (14) | 0.0123 (14) | −0.0040 (14) |
O6 | 0.062 (2) | 0.055 (2) | 0.071 (2) | 0.0023 (17) | 0.0325 (18) | −0.0205 (18) |
Ni1 | 0.0469 (4) | 0.0241 (3) | 0.0321 (3) | −0.0013 (2) | 0.0122 (2) | −0.0036 (2) |
O1W—Ni1 | 1.979 (3) | C11—H11 | 0.9300 |
O1W—H1WA | 0.83 (2) | C12—N3 | 1.372 (5) |
O1W—H1WB | 0.83 (2) | C12—C13 | 1.448 (5) |
O2W—H2WA | 0.83 (2) | C13—N4 | 1.366 (5) |
O2W—H2WB | 0.83 (2) | C13—C17 | 1.393 (5) |
C1—N2 | 1.349 (5) | C14—N4 | 1.334 (5) |
C1—C6 | 1.427 (6) | C14—C15 | 1.393 (6) |
C1—C2 | 1.432 (6) | C14—H14 | 0.9300 |
C2—C3 | 1.359 (6) | C15—C16 | 1.388 (6) |
C2—H2 | 0.9300 | C15—H15 | 0.9300 |
C3—C4 | 1.416 (6) | C16—C17 | 1.402 (5) |
C3—H3 | 0.9300 | C16—H16 | 0.9300 |
C4—C5 | 1.360 (6) | C17—C18 | 1.484 (5) |
C4—H4 | 0.9300 | C18—N2 | 1.334 (5) |
C5—C6 | 1.411 (5) | N3—Ni1 | 2.033 (3) |
C5—H5 | 0.9300 | N4—Ni1 | 1.992 (3) |
C6—N1 | 1.356 (5) | N5—O2 | 1.233 (4) |
C7—N1 | 1.341 (5) | N5—O1 | 1.244 (4) |
C7—C18 | 1.436 (5) | N5—O3 | 1.286 (4) |
C7—C8 | 1.472 (5) | N6—O4 | 1.240 (4) |
C8—C12 | 1.393 (5) | N6—O4 | 1.240 (4) |
C8—C9 | 1.396 (5) | N6—O6 | 1.244 (4) |
C9—C10 | 1.366 (6) | N6—O5 | 1.285 (4) |
C9—H9 | 0.9300 | O3—Ni1 | 2.164 (3) |
C10—C11 | 1.399 (6) | O4—O4 | 0.000 (6) |
C10—H10 | 0.9300 | O5—Ni1 | 2.090 (3) |
C11—N3 | 1.342 (5) | ||
Ni1—O1W—H1WA | 106 (4) | N4—C14—H14 | 118.4 |
Ni1—O1W—H1WB | 113 (4) | C15—C14—H14 | 118.4 |
H1WA—O1W—H1WB | 116 (6) | C16—C15—C14 | 119.1 (4) |
H2WA—O2W—H2WB | 100 (6) | C16—C15—H15 | 120.4 |
N2—C1—C6 | 121.6 (4) | C14—C15—H15 | 120.4 |
N2—C1—C2 | 119.7 (4) | C15—C16—C17 | 118.7 (4) |
C6—C1—C2 | 118.7 (4) | C15—C16—H16 | 120.7 |
C3—C2—C1 | 119.5 (4) | C17—C16—H16 | 120.7 |
C3—C2—H2 | 120.3 | C13—C17—C16 | 118.6 (4) |
C1—C2—H2 | 120.3 | C13—C17—C18 | 118.7 (3) |
C2—C3—C4 | 121.9 (4) | C16—C17—C18 | 122.6 (4) |
C2—C3—H3 | 119.1 | N2—C18—C7 | 121.9 (4) |
C4—C3—H3 | 119.1 | N2—C18—C17 | 118.6 (3) |
C5—C4—C3 | 119.6 (4) | C7—C18—C17 | 119.5 (4) |
C5—C4—H4 | 120.2 | C7—N1—C6 | 116.5 (3) |
C3—C4—H4 | 120.2 | C18—N2—C1 | 116.8 (3) |
C4—C5—C6 | 121.1 (4) | C11—N3—C12 | 117.5 (3) |
C4—C5—H5 | 119.5 | C11—N3—Ni1 | 130.3 (3) |
C6—C5—H5 | 119.5 | C12—N3—Ni1 | 112.2 (2) |
N1—C6—C5 | 119.2 (4) | C14—N4—C13 | 117.9 (3) |
N1—C6—C1 | 121.6 (4) | C14—N4—Ni1 | 128.6 (3) |
C5—C6—C1 | 119.3 (4) | C13—N4—Ni1 | 113.5 (3) |
N1—C7—C18 | 121.6 (4) | O2—N5—O1 | 122.7 (4) |
N1—C7—C8 | 118.5 (4) | O2—N5—O3 | 119.3 (4) |
C18—C7—C8 | 119.9 (3) | O1—N5—O3 | 118.0 (4) |
C12—C8—C9 | 117.9 (4) | O4—N6—O4 | 0.0 (4) |
C12—C8—C7 | 118.8 (4) | O4—N6—O6 | 123.3 (4) |
C9—C8—C7 | 123.4 (4) | O4—N6—O6 | 123.3 (4) |
C10—C9—C8 | 119.9 (4) | O4—N6—O5 | 118.0 (4) |
C10—C9—H9 | 120.1 | O4—N6—O5 | 118.0 (4) |
C8—C9—H9 | 120.1 | O6—N6—O5 | 118.7 (4) |
C9—C10—C11 | 119.3 (4) | N5—O3—Ni1 | 119.9 (3) |
C9—C10—H10 | 120.4 | O4—O4—N6 | 0 (10) |
C11—C10—H10 | 120.4 | N6—O5—Ni1 | 105.9 (2) |
N3—C11—C10 | 122.5 (4) | O1W—Ni1—N4 | 170.98 (15) |
N3—C11—H11 | 118.7 | O1W—Ni1—N3 | 94.82 (14) |
C10—C11—H11 | 118.7 | N4—Ni1—N3 | 82.22 (13) |
N3—C12—C8 | 122.7 (4) | O1W—Ni1—O5 | 87.80 (13) |
N3—C12—C13 | 115.7 (3) | N4—Ni1—O5 | 92.19 (12) |
C8—C12—C13 | 121.5 (4) | N3—Ni1—O5 | 160.31 (12) |
N4—C13—C17 | 122.5 (4) | O1W—Ni1—O3 | 89.62 (14) |
N4—C13—C12 | 116.2 (3) | N4—Ni1—O3 | 99.32 (12) |
C17—C13—C12 | 121.3 (3) | N3—Ni1—O3 | 117.52 (13) |
N4—C14—C15 | 123.1 (4) | O5—Ni1—O3 | 81.96 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O6i | 0.83 (2) | 2.02 (2) | 2.839 (5) | 170 (6) |
O1W—H1WB···O2Wii | 0.83 (2) | 1.81 (2) | 2.630 (6) | 169 (6) |
O2W—H2WB···O3iii | 0.83 (2) | 2.11 (4) | 2.873 (5) | 153 (7) |
O2W—H2WA···O4 | 0.83 (2) | 1.98 (2) | 2.798 (5) | 167 (6) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) x−1, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(NO3)2(C18H10N4)(H2O)]·H2O |
Mr | 501.04 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.300 (3), 27.872 (12), 9.950 (4) |
β (°) | 109.005 (6) |
V (Å3) | 1914.1 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.08 |
Crystal size (mm) | 0.24 × 0.21 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.792, 0.805 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12703, 3338, 2255 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.125, 0.99 |
No. of reflections | 3338 |
No. of parameters | 314 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.02, −0.35 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O6i | 0.83 (2) | 2.02 (2) | 2.839 (5) | 170 (6) |
O1W—H1WB···O2Wii | 0.83 (2) | 1.81 (2) | 2.630 (6) | 169 (6) |
O2W—H2WB···O3iii | 0.83 (2) | 2.11 (4) | 2.873 (5) | 153 (7) |
O2W—H2WA···O4 | 0.83 (2) | 1.98 (2) | 2.798 (5) | 167 (6) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) x−1, −y+1/2, z−1/2. |
Acknowledgements
The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province, the Governor Foundation of Guizhou Province and the Natural Science Youth Foundation of Guizhou University (No. 2007–005) for financial support.
References
Ambroise, A. & Maiya, B. G. (2000). Inorg. Chem. 39, 4264–4272. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Lo, K. K.-W. & Hui, W.-K. (2005). Inorg. Chem. 44, 1992–2002. Web of Science CrossRef PubMed CAS Google Scholar
Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thomas, K. R. J., Velusamy, M. T. L., Jiann Chuen, C. H. & Tao, Y. T. (2005). Inorg. Chem. 39, 4264–4272. Google Scholar
Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). And quinoxaline derivates and 1,10-phenanthroline are known to function as electron-transporting materials (Ambroise & Maiya, 2000; Lo & Hui, 2005; Thomas, et al., 2005). We report here the crystal structure of the title nitrate(II) complex, (I), containing quinoxaline and 1,10-phenanthroline groups.
In the crystal of the title compound (Fig. 1), the NiII ion is coordinated by two N atoms of the 1,10-phenanthroline ligand, three O atoms from the two nitrate anions and an O atom from one water molecule. The O—H···O hydrogen bonds are observed between NO3- and the water molecule. The hydrogen bond distances of the O1W—H1WA···O6, O1W—H1WB···O2W, O2W—H2WB···O3 and O2W—H2WA···O4, are 2.839 (5), 2.630 (6), 2.873 (5) and 2.798 (5) Å, respectively (Table 1). In the crystal structure, O—H···O hydrogen bonds interactions may help to establish the packing.