organic compounds
Hydrogen bonding in 2-carboxyanilinium dihydrogen phosphite at 100 K
aLaboratoire des Structures, Propriétés et Interactions Inter Atomiques (LASPI2A), Centre Universitaire de Khenchela, 40000 Khenchela, Algeria
*Correspondence e-mail: benalicherif@hotmail.com
The title compound, C7H8NO2+·H2PO3−, is formed from alternating layers of organic cations and inorganic anions stacked along the a-axis direction. They are associated via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonding, giving rise to two different R22(8) graph-set motifs and generating a three-dimensional network.
Related literature
For applications of hybrid compounds, see: Kagan et al. (1999); Mazeaud et al. (2000); Benali-Cherif, Direm et al. (2007). For applications of anthranilic acid derivatives, see: He et al. (2003); Per Wiklund et al. (2004); Congiu et al. (2005); Nittoli et al. (2005). For related structured, see: Bendeif et al. (2003, 2009); Benali-Cherif, Allouche et al. (2007). For graph-set theory, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: KappaCCD Server Software (Nonius, 1998); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809007077/bg2238sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007077/bg2238Isup2.hkl
Crystals of anthranilicium phosphite are prepared by slow evaporation at room temperature of an aqueous solution of 2-aminobenzoic acid and H3PO3 in a 1:1 stochiometric ratio.
The title compound crystallizes in the centrosymmetric
P-1. A l l non-H atoms were refined with anisotropic atomic displacement parameters. All H-atoms were located in difference Fourier syntheses and refined as riding model with C—H, N—H, O—H bond lengths constrained to 0.950 Å, 0.910 Å, 0.840Å respectively.Data collection: KappaCCD Server Software (Nonius, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. View of the asymmetric unit of C7H8NO2+.H2PO3- showing atom labels and suggesting the hydrogen bondings richness. Displacement factors drawn at a 50% level. | |
Fig. 2. Unit cell projection down a, showing the two different R22(8) graph motifs in the structure. |
C7H8NO2+·H2PO3− | Z = 2 |
Mr = 219.13 | F(000) = 228 |
Triclinic, P1 | Dx = 1.643 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8757 (6) Å | Cell parameters from 11058 reflections |
b = 9.4597 (6) Å | θ = 2.8–32.7° |
c = 10.0801 (5) Å | µ = 0.31 mm−1 |
α = 78.929 (3)° | T = 100 K |
β = 76.058 (4)° | Prism, colourless |
γ = 86.814 (2)° | 0.25 × 0.18 × 0.05 mm |
V = 442.81 (7) Å3 |
Oxford Diffraction Xcalibur Saphire2 diffractometer | 2581 independent reflections |
Radiation source: fine-focus sealed tube | 2559 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 8.4221 pixels mm-1 | θmax = 30.0°, θmin = 2.8° |
ω and θ scans | h = −6→6 |
Absorption correction: integration (ABSORB; DeTitta, 1985) | k = −12→13 |
Tmin = 0.972, Tmax = 0.985 | l = 0→14 |
11058 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.093 | H-atom parameters not refined |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2002P] where P = (Fo2 + 2Fc2)/3 |
2581 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C7H8NO2+·H2PO3− | γ = 86.814 (2)° |
Mr = 219.13 | V = 442.81 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.8757 (6) Å | Mo Kα radiation |
b = 9.4597 (6) Å | µ = 0.31 mm−1 |
c = 10.0801 (5) Å | T = 100 K |
α = 78.929 (3)° | 0.25 × 0.18 × 0.05 mm |
β = 76.058 (4)° |
Oxford Diffraction Xcalibur Saphire2 diffractometer | 2581 independent reflections |
Absorption correction: integration (ABSORB; DeTitta, 1985) | 2559 reflections with I > 2σ(I) |
Tmin = 0.972, Tmax = 0.985 | Rint = 0.035 |
11058 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters not refined |
S = 1.07 | Δρmax = 0.58 e Å−3 |
2581 reflections | Δρmin = −0.24 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.22190 (19) | 0.11913 (10) | 0.23669 (10) | 0.01503 (19) | |
H1 | 1.3765 | 0.1163 | 0.1783 | 0.023* | |
O2 | 1.18445 (19) | 0.33344 (10) | 0.10200 (9) | 0.01319 (18) | |
N1 | 0.6956 (2) | 0.48161 (11) | 0.14593 (10) | 0.0107 (2) | |
H1A | 0.5423 | 0.5400 | 0.1407 | 0.013* | |
H1B | 0.7309 | 0.4308 | 0.0754 | 0.013* | |
H1C | 0.8484 | 0.5361 | 0.1386 | 0.013* | |
C1 | 1.0902 (2) | 0.24260 (13) | 0.20403 (12) | 0.0109 (2) | |
C2 | 0.8201 (2) | 0.26393 (13) | 0.30600 (12) | 0.0106 (2) | |
C3 | 0.6396 (3) | 0.38167 (13) | 0.27952 (12) | 0.0104 (2) | |
C4 | 0.3987 (3) | 0.40572 (13) | 0.37899 (13) | 0.0131 (2) | |
H4 | 0.2794 | 0.4862 | 0.3601 | 0.016* | |
C5 | 0.3322 (3) | 0.31144 (14) | 0.50686 (13) | 0.0150 (2) | |
H5 | 0.1688 | 0.3284 | 0.5755 | 0.018* | |
C6 | 0.5051 (3) | 0.19272 (15) | 0.53363 (13) | 0.0157 (2) | |
H6 | 0.4584 | 0.1276 | 0.6199 | 0.019* | |
C7 | 0.7466 (3) | 0.16969 (14) | 0.43364 (13) | 0.0141 (2) | |
H7 | 0.8639 | 0.0883 | 0.4525 | 0.017* | |
P1 | 0.19035 (6) | 0.80587 (3) | 0.08601 (3) | 0.01016 (10) | |
O3 | 0.29056 (19) | 0.88933 (10) | −0.06075 (9) | 0.01379 (18) | |
O4 | 0.20062 (18) | 0.64347 (9) | 0.10464 (9) | 0.01255 (18) | |
O5 | −0.1212 (2) | 0.85119 (10) | 0.14917 (10) | 0.0166 (2) | |
H5O | −0.1511 | 0.9363 | 0.1122 | 0.025* | |
H | 0.3396 | 0.8447 | 0.1629 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0120 (4) | 0.0112 (4) | 0.0180 (4) | 0.0041 (3) | −0.0003 (3) | 0.0013 (3) |
O2 | 0.0124 (4) | 0.0120 (4) | 0.0132 (4) | 0.0011 (3) | −0.0016 (3) | 0.0003 (3) |
N1 | 0.0102 (5) | 0.0093 (4) | 0.0118 (5) | 0.0016 (3) | −0.0022 (3) | −0.0011 (3) |
C1 | 0.0102 (5) | 0.0099 (5) | 0.0131 (5) | 0.0011 (4) | −0.0039 (4) | −0.0025 (4) |
C2 | 0.0097 (5) | 0.0101 (5) | 0.0118 (5) | 0.0003 (4) | −0.0030 (4) | −0.0013 (4) |
C3 | 0.0117 (5) | 0.0093 (5) | 0.0101 (5) | −0.0004 (4) | −0.0031 (4) | −0.0013 (4) |
C4 | 0.0122 (5) | 0.0128 (5) | 0.0141 (5) | 0.0013 (4) | −0.0020 (4) | −0.0036 (4) |
C5 | 0.0134 (5) | 0.0180 (6) | 0.0128 (5) | −0.0004 (4) | −0.0006 (4) | −0.0042 (4) |
C6 | 0.0172 (6) | 0.0175 (6) | 0.0103 (5) | −0.0013 (5) | −0.0016 (4) | 0.0014 (4) |
C7 | 0.0137 (5) | 0.0130 (6) | 0.0142 (5) | 0.0016 (4) | −0.0036 (4) | 0.0008 (4) |
P1 | 0.01028 (15) | 0.00778 (15) | 0.01211 (15) | 0.00126 (10) | −0.00279 (11) | −0.00126 (10) |
O3 | 0.0124 (4) | 0.0106 (4) | 0.0148 (4) | 0.0029 (3) | 0.0006 (3) | 0.0007 (3) |
O4 | 0.0124 (4) | 0.0082 (4) | 0.0166 (4) | 0.0013 (3) | −0.0040 (3) | −0.0009 (3) |
O5 | 0.0149 (4) | 0.0110 (4) | 0.0181 (4) | 0.0053 (3) | 0.0026 (3) | 0.0018 (3) |
O1—C1 | 1.3250 (14) | C4—H4 | 0.9500 |
O1—H1 | 0.8399 | C5—C6 | 1.3902 (18) |
O2—C1 | 1.2182 (15) | C5—H5 | 0.9500 |
N1—C3 | 1.4643 (15) | C6—C7 | 1.3908 (17) |
N1—H1A | 0.9100 | C6—H6 | 0.9500 |
N1—H1B | 0.9100 | C7—H7 | 0.9500 |
N1—H1C | 0.9101 | P1—O4 | 1.5110 (9) |
C1—C2 | 1.4930 (16) | P1—O3 | 1.5154 (9) |
C2—C7 | 1.3970 (16) | P1—O5 | 1.5695 (9) |
C2—C3 | 1.4060 (16) | P1—H | 1.2947 |
C3—C4 | 1.3880 (16) | O5—H5O | 0.8400 |
C4—C5 | 1.3969 (17) | ||
C1—O1—H1 | 109.5 | C5—C4—H4 | 120.1 |
C3—N1—H1A | 109.5 | C6—C5—C4 | 120.00 (11) |
C3—N1—H1B | 109.5 | C6—C5—H5 | 120.0 |
H1A—N1—H1B | 109.5 | C4—C5—H5 | 120.0 |
C3—N1—H1C | 109.5 | C5—C6—C7 | 119.76 (12) |
H1A—N1—H1C | 109.5 | C5—C6—H6 | 120.1 |
H1B—N1—H1C | 109.5 | C7—C6—H6 | 120.1 |
O2—C1—O1 | 123.21 (11) | C6—C7—C2 | 121.25 (12) |
O2—C1—C2 | 122.48 (11) | C6—C7—H7 | 119.4 |
O1—C1—C2 | 114.27 (10) | C2—C7—H7 | 119.4 |
C7—C2—C3 | 118.21 (11) | O4—P1—O3 | 116.92 (5) |
C7—C2—C1 | 120.31 (11) | O4—P1—O5 | 107.62 (5) |
C3—C2—C1 | 121.42 (11) | O3—P1—O5 | 109.90 (5) |
C4—C3—C2 | 120.87 (11) | O4—P1—H | 108.37 |
C4—C3—N1 | 117.68 (10) | O3—P1—H | 108.24 |
C2—C3—N1 | 121.44 (10) | O5—P1—H | 105.16 |
C3—C4—C5 | 119.89 (11) | P1—O5—H5O | 109.5 |
C3—C4—H4 | 120.1 | ||
O2—C1—C2—C7 | −168.18 (12) | C2—C3—C4—C5 | −0.57 (19) |
O1—C1—C2—C7 | 9.66 (16) | N1—C3—C4—C5 | 178.45 (11) |
O2—C1—C2—C3 | 9.07 (18) | C3—C4—C5—C6 | −0.83 (19) |
O1—C1—C2—C3 | −173.09 (11) | C4—C5—C6—C7 | 1.1 (2) |
C7—C2—C3—C4 | 1.67 (18) | C5—C6—C7—C2 | 0.1 (2) |
C1—C2—C3—C4 | −175.63 (11) | C3—C2—C7—C6 | −1.42 (18) |
C7—C2—C3—N1 | −177.31 (11) | C1—C2—C7—C6 | 175.92 (12) |
C1—C2—C3—N1 | 5.39 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.84 | 1.77 | 2.6085 (13) | 178 |
N1—H1A···O4 | 0.91 | 1.96 | 2.8589 (14) | 169 |
N1—H1B···O4ii | 0.91 | 2.02 | 2.9160 (13) | 169 |
N1—H1C···O4iii | 0.91 | 1.97 | 2.8740 (14) | 173 |
O5—H5O···O3iv | 0.84 | 1.78 | 2.6059 (13) | 167 |
C6—H6···O5v | 0.95 | 2.55 | 3.2542 (15) | 132 |
C7—H7···O1 | 0.95 | 2.42 | 2.7503 (16) | 101 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y+1, −z; (iii) x+1, y, z; (iv) −x, −y+2, −z; (v) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H8NO2+·H2PO3− |
Mr | 219.13 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 4.8757 (6), 9.4597 (6), 10.0801 (5) |
α, β, γ (°) | 78.929 (3), 76.058 (4), 86.814 (2) |
V (Å3) | 442.81 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.25 × 0.18 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Saphire2 diffractometer |
Absorption correction | Integration (ABSORB; DeTitta, 1985) |
Tmin, Tmax | 0.972, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11058, 2581, 2559 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.093, 1.07 |
No. of reflections | 2581 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.58, −0.24 |
Computer programs: KappaCCD Server Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.84 | 1.77 | 2.6085 (13) | 178 |
N1—H1A···O4 | 0.91 | 1.96 | 2.8589 (14) | 169 |
N1—H1B···O4ii | 0.91 | 2.02 | 2.9160 (13) | 169 |
N1—H1C···O4iii | 0.91 | 1.97 | 2.8740 (14) | 173 |
O5—H5O···O3iv | 0.84 | 1.78 | 2.6059 (13) | 167 |
C6—H6···O5v | 0.95 | 2.55 | 3.2542 (15) | 132 |
C7—H7···O1 | 0.95 | 2.42 | 2.7503 (16) | 101 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y+1, −z; (iii) x+1, y, z; (iv) −x, −y+2, −z; (v) −x, −y+1, −z+1. |
Acknowledgements
We wish to thank Dr C. Lecomte of LCM3B (UMR UHP –CNRS 7036), Faculté des Sciences et Techniques 54506 Vandoeuvre-lès-Nancy CEDEX, for providing diffraction facilities in his laboratory, and le Centre Universitaire de Khenchela for financial support.
References
Benali-Cherif, N., Direm, A., Allouche, F., Boukli-H-Benmenni, L. & Soudani, K. (2007). Acta Cryst. E63, o2054–o2056. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benali-Cherif, N., Direm, A., Allouche, F. & Soudani, K. (2007). Acta Cryst. E63, o2272–o2274. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bendheif, L., Benali-Cherif, N., Benguedouar, L., Bouchouit, K. & Merazig, H. (2003). Acta Cryst. E59, o141–o142. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bendeif, E.-E., Lecomte, C. & Dahaoui, S. (2009). Acta Cryst. B65, 59–67. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Congiu, C., Cocco, M. T., Lilliu, V. & Onnis, V. (2005). J. Med. Chem. 48, 8245–8252. Web of Science CrossRef PubMed CAS Google Scholar
DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
He, L., Sato, K., Abo, M., Okubo, A. & Yamazaki, S. (2003). Anal. Biochem. 314, 128–134. Web of Science CrossRef PubMed CAS Google Scholar
Kagan, C. R., Mitzi, D. B. C. & Dimitrakopoulos, C. D. (1999). Science, 286, 945–947. Web of Science CrossRef PubMed CAS Google Scholar
Mazeaud, A., Dromzee, Y. & Thouvenot, R. (2000). Inorg. Chem. 39, 4735–4740. Web of Science CrossRef PubMed CAS Google Scholar
Nittoli, T., Curran, K., Insaf, S., DiGrandi, M., Orlowski, M., Chopra, R., Agarwal, A., Howe, A. Y. M., Prashad, A., Floyd, M. B., Johnson, B., Sutherland, A., Wheless, K., Feld, B., O'Connell, J., Mansour, T. S. & Bloom, J. (2005). J. Med. Chem. 48, 7560–7581. Web of Science PubMed Google Scholar
Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wiklund, P. & Bergman, J. (2004). Tetrahedron, 45, 969–972. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structures of organic-inorganic hybrid materials have been extensively investigated due to their interest in the field of new materials, and the number of reported structures is rapidly growing owing to their applications in medicine, material science and to their electrical, magnetic and optical properties (Kagan et al., 1999; Mazeaud et al., 2000) and the hydrogen bonding richness of these structures. This kind of hydrogen bonding appears in the active sites of several biological systems and is observed in similar previously studied hybrid compounds (Benali-Cherif, Direm et al., 2007).
As well as being a biochemical precursor of the amino acids tryptophan, phenylalanine and tyrosine, anthranilic acid is used as a useful derivating agent for carbohydrate analysis (He et al., 2003). 2-Aminobenzoic acid is present as a part of the core structure of certain alkaloids, synthetic drugs (Per Wiklund et al., 2004), antiinflammatory, anticancer agents (Congiu et al., 2005) and as inhibitor of Hepatitis C NS5B polymerase (Nittoli et al., 2005).
The title compound structure (I) is composed of cationic HOO-C6H4—NH3+ and anionic (H2PO3-) groups (Fig.1). All bond lengths and angles of the (H2PO3-) tetrahedra and the o-carboxyanilinium cations are within normal ranges, in a good agreement with those observed in the litterature (Bendeif et al. 2003, Bendeif et al. 2009) and (Benali-Cherif, Allouche et al., 2007), respectively.
The three H atoms of the anilinium group are subsequently involved in extensive N—H···O hydrogen-bonding (Table 1) interactions with O4 being a multiple acceptor of three different phosphite anions, while O3 behaves as double acceptor of hydrogen bonds from one cation, via O1 in the carboxylic group, and one anion, via O5 in the phosphite anion. These interactions give raise to two different R22(8) graph set motifs (Bernstein et al. 1995), shown in Fig. 2. In addition, there are intramolecular interactions involving the benzene ring and the carboxylic group ensuring cohesion and stability of the crystal structiure.