organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o664-o665

Hydrogen bonding in 2-carb­oxy­anilinium di­hydrogen phosphite at 100 K

aLaboratoire des Structures, Propriétés et Interactions Inter Atomiques (LASPI2A), Centre Universitaire de Khenchela, 40000 Khenchela, Algeria
*Correspondence e-mail: benalicherif@hotmail.com

(Received 13 February 2009; accepted 25 February 2009; online 6 March 2009)

The title compound, C7H8NO2+·H2PO3, is formed from alternating layers of organic cations and inorganic anions stacked along the a-axis direction. They are associated via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonding, giving rise to two different R22(8) graph-set motifs and generating a three-dimensional network.

Related literature

For applications of hybrid compounds, see: Kagan et al. (1999[Kagan, C. R., Mitzi, D. B. C. & Dimitrakopoulos, C. D. (1999). Science, 286, 945-947.]); Mazeaud et al. (2000[Mazeaud, A., Dromzee, Y. & Thouvenot, R. (2000). Inorg. Chem. 39, 4735-4740.]); Benali-Cherif, Direm et al. (2007[Benali-Cherif, N., Direm, A., Allouche, F. & Soudani, K. (2007). Acta Cryst. E63, o2272-o2274.]). For applications of anthranilic acid derivatives, see: He et al. (2003[He, L., Sato, K., Abo, M., Okubo, A. & Yamazaki, S. (2003). Anal. Biochem. 314, 128-134.]); Per Wiklund et al. (2004[Wiklund, P. & Bergman, J. (2004). Tetrahedron, 45, 969-972.]); Congiu et al. (2005[Congiu, C., Cocco, M. T., Lilliu, V. & Onnis, V. (2005). J. Med. Chem. 48, 8245-8252.]); Nittoli et al. (2005[Nittoli, T., Curran, K., Insaf, S., DiGrandi, M., Orlowski, M., Chopra, R., Agarwal, A., Howe, A. Y. M., Prashad, A., Floyd, M. B., Johnson, B., Sutherland, A., Wheless, K., Feld, B., O'Connell, J., Mansour, T. S. & Bloom, J. (2005). J. Med. Chem. 48, 7560-7581.]). For related structured, see: Bendeif et al. (2003[Bendheif, L., Benali-Cherif, N., Benguedouar, L., Bouchouit, K. & Merazig, H. (2003). Acta Cryst. E59, o141-o142.], 2009[Bendeif, E.-E., Lecomte, C. & Dahaoui, S. (2009). Acta Cryst. B65, 59-67.]); Benali-Cherif, Allouche et al. (2007[Benali-Cherif, N., Direm, A., Allouche, F., Boukli-H-Benmenni, L. & Soudani, K. (2007). Acta Cryst. E63, o2054-o2056.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8NO2+·H2PO3

  • Mr = 219.13

  • Triclinic, [P \overline 1]

  • a = 4.8757 (6) Å

  • b = 9.4597 (6) Å

  • c = 10.0801 (5) Å

  • α = 78.929 (3)°

  • β = 76.058 (4)°

  • γ = 86.814 (2)°

  • V = 442.81 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.25 × 0.18 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Saphire2 diffractometer

  • Absorption correction: integration (ABSORB; DeTitta, 1985[DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75-79.]) Tmin = 0.972, Tmax = 0.985

  • 11058 measured reflections

  • 2581 independent reflections

  • 2559 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.093

  • S = 1.07

  • 2581 reflections

  • 127 parameters

  • H-atom parameters not refined

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.84 1.77 2.6085 (13) 178
N1—H1A⋯O4 0.91 1.96 2.8589 (14) 169
N1—H1B⋯O4ii 0.91 2.02 2.9160 (13) 169
N1—H1C⋯O4iii 0.91 1.97 2.8740 (14) 173
O5—H5O⋯O3iv 0.84 1.78 2.6059 (13) 167
C6—H6⋯O5v 0.95 2.55 3.2542 (15) 132
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x, -y+2, -z; (v) -x, -y+1, -z+1.

Data collection: KappaCCD Server Software (Nonius, 1998[Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The crystal structures of organic-inorganic hybrid materials have been extensively investigated due to their interest in the field of new materials, and the number of reported structures is rapidly growing owing to their applications in medicine, material science and to their electrical, magnetic and optical properties (Kagan et al., 1999; Mazeaud et al., 2000) and the hydrogen bonding richness of these structures. This kind of hydrogen bonding appears in the active sites of several biological systems and is observed in similar previously studied hybrid compounds (Benali-Cherif, Direm et al., 2007).

As well as being a biochemical precursor of the amino acids tryptophan, phenylalanine and tyrosine, anthranilic acid is used as a useful derivating agent for carbohydrate analysis (He et al., 2003). 2-Aminobenzoic acid is present as a part of the core structure of certain alkaloids, synthetic drugs (Per Wiklund et al., 2004), antiinflammatory, anticancer agents (Congiu et al., 2005) and as inhibitor of Hepatitis C NS5B polymerase (Nittoli et al., 2005).

The title compound structure (I) is composed of cationic HOO-C6H4—NH3+ and anionic (H2PO3-) groups (Fig.1). All bond lengths and angles of the (H2PO3-) tetrahedra and the o-carboxyanilinium cations are within normal ranges, in a good agreement with those observed in the litterature (Bendeif et al. 2003, Bendeif et al. 2009) and (Benali-Cherif, Allouche et al., 2007), respectively.

The three H atoms of the anilinium group are subsequently involved in extensive N—H···O hydrogen-bonding (Table 1) interactions with O4 being a multiple acceptor of three different phosphite anions, while O3 behaves as double acceptor of hydrogen bonds from one cation, via O1 in the carboxylic group, and one anion, via O5 in the phosphite anion. These interactions give raise to two different R22(8) graph set motifs (Bernstein et al. 1995), shown in Fig. 2. In addition, there are intramolecular interactions involving the benzene ring and the carboxylic group ensuring cohesion and stability of the crystal structiure.

Related literature top

For hybrid compound applications, see: Kagan et al. (1999); Mazeaud et al. (2000); Benali-Cherif, Direm et al. (2007). For applications of anthranilic acid derivatives, see: He et al. (2003). Per Wiklund et al. (2004); Congiu et al. (2005); Nittoli et al. (2005). For related structured, see: Bendeif et al. (2003, 2009); Benali-Cherif, Allouche et al. (2007). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

Crystals of anthranilicium phosphite are prepared by slow evaporation at room temperature of an aqueous solution of 2-aminobenzoic acid and H3PO3 in a 1:1 stochiometric ratio.

Refinement top

The title compound crystallizes in the centrosymmetric space group P-1. A l l non-H atoms were refined with anisotropic atomic displacement parameters. All H-atoms were located in difference Fourier syntheses and refined as riding model with C—H, N—H, O—H bond lengths constrained to 0.950 Å, 0.910 Å, 0.840Å respectively.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of C7H8NO2+.H2PO3- showing atom labels and suggesting the hydrogen bondings richness. Displacement factors drawn at a 50% level.
[Figure 2] Fig. 2. Unit cell projection down a, showing the two different R22(8) graph motifs in the structure.
2-carboxyanilinium dihydrogen phosphite top
Crystal data top
C7H8NO2+·H2PO3Z = 2
Mr = 219.13F(000) = 228
Triclinic, P1Dx = 1.643 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8757 (6) ÅCell parameters from 11058 reflections
b = 9.4597 (6) Åθ = 2.8–32.7°
c = 10.0801 (5) ŵ = 0.31 mm1
α = 78.929 (3)°T = 100 K
β = 76.058 (4)°Prism, colourless
γ = 86.814 (2)°0.25 × 0.18 × 0.05 mm
V = 442.81 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Saphire2
diffractometer
2581 independent reflections
Radiation source: fine-focus sealed tube2559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.4221 pixels mm-1θmax = 30.0°, θmin = 2.8°
ω and θ scansh = 66
Absorption correction: integration
(ABSORB; DeTitta, 1985)
k = 1213
Tmin = 0.972, Tmax = 0.985l = 014
11058 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.093H-atom parameters not refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2002P]
where P = (Fo2 + 2Fc2)/3
2581 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C7H8NO2+·H2PO3γ = 86.814 (2)°
Mr = 219.13V = 442.81 (7) Å3
Triclinic, P1Z = 2
a = 4.8757 (6) ÅMo Kα radiation
b = 9.4597 (6) ŵ = 0.31 mm1
c = 10.0801 (5) ÅT = 100 K
α = 78.929 (3)°0.25 × 0.18 × 0.05 mm
β = 76.058 (4)°
Data collection top
Oxford Diffraction Xcalibur Saphire2
diffractometer
2581 independent reflections
Absorption correction: integration
(ABSORB; DeTitta, 1985)
2559 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.985Rint = 0.035
11058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.093H-atom parameters not refined
S = 1.07Δρmax = 0.58 e Å3
2581 reflectionsΔρmin = 0.24 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.22190 (19)0.11913 (10)0.23669 (10)0.01503 (19)
H11.37650.11630.17830.023*
O21.18445 (19)0.33344 (10)0.10200 (9)0.01319 (18)
N10.6956 (2)0.48161 (11)0.14593 (10)0.0107 (2)
H1A0.54230.54000.14070.013*
H1B0.73090.43080.07540.013*
H1C0.84840.53610.13860.013*
C11.0902 (2)0.24260 (13)0.20403 (12)0.0109 (2)
C20.8201 (2)0.26393 (13)0.30600 (12)0.0106 (2)
C30.6396 (3)0.38167 (13)0.27952 (12)0.0104 (2)
C40.3987 (3)0.40572 (13)0.37899 (13)0.0131 (2)
H40.27940.48620.36010.016*
C50.3322 (3)0.31144 (14)0.50686 (13)0.0150 (2)
H50.16880.32840.57550.018*
C60.5051 (3)0.19272 (15)0.53363 (13)0.0157 (2)
H60.45840.12760.61990.019*
C70.7466 (3)0.16969 (14)0.43364 (13)0.0141 (2)
H70.86390.08830.45250.017*
P10.19035 (6)0.80587 (3)0.08601 (3)0.01016 (10)
O30.29056 (19)0.88933 (10)0.06075 (9)0.01379 (18)
O40.20062 (18)0.64347 (9)0.10464 (9)0.01255 (18)
O50.1212 (2)0.85119 (10)0.14917 (10)0.0166 (2)
H5O0.15110.93630.11220.025*
H0.33960.84470.16290.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0120 (4)0.0112 (4)0.0180 (4)0.0041 (3)0.0003 (3)0.0013 (3)
O20.0124 (4)0.0120 (4)0.0132 (4)0.0011 (3)0.0016 (3)0.0003 (3)
N10.0102 (5)0.0093 (4)0.0118 (5)0.0016 (3)0.0022 (3)0.0011 (3)
C10.0102 (5)0.0099 (5)0.0131 (5)0.0011 (4)0.0039 (4)0.0025 (4)
C20.0097 (5)0.0101 (5)0.0118 (5)0.0003 (4)0.0030 (4)0.0013 (4)
C30.0117 (5)0.0093 (5)0.0101 (5)0.0004 (4)0.0031 (4)0.0013 (4)
C40.0122 (5)0.0128 (5)0.0141 (5)0.0013 (4)0.0020 (4)0.0036 (4)
C50.0134 (5)0.0180 (6)0.0128 (5)0.0004 (4)0.0006 (4)0.0042 (4)
C60.0172 (6)0.0175 (6)0.0103 (5)0.0013 (5)0.0016 (4)0.0014 (4)
C70.0137 (5)0.0130 (6)0.0142 (5)0.0016 (4)0.0036 (4)0.0008 (4)
P10.01028 (15)0.00778 (15)0.01211 (15)0.00126 (10)0.00279 (11)0.00126 (10)
O30.0124 (4)0.0106 (4)0.0148 (4)0.0029 (3)0.0006 (3)0.0007 (3)
O40.0124 (4)0.0082 (4)0.0166 (4)0.0013 (3)0.0040 (3)0.0009 (3)
O50.0149 (4)0.0110 (4)0.0181 (4)0.0053 (3)0.0026 (3)0.0018 (3)
Geometric parameters (Å, º) top
O1—C11.3250 (14)C4—H40.9500
O1—H10.8399C5—C61.3902 (18)
O2—C11.2182 (15)C5—H50.9500
N1—C31.4643 (15)C6—C71.3908 (17)
N1—H1A0.9100C6—H60.9500
N1—H1B0.9100C7—H70.9500
N1—H1C0.9101P1—O41.5110 (9)
C1—C21.4930 (16)P1—O31.5154 (9)
C2—C71.3970 (16)P1—O51.5695 (9)
C2—C31.4060 (16)P1—H1.2947
C3—C41.3880 (16)O5—H5O0.8400
C4—C51.3969 (17)
C1—O1—H1109.5C5—C4—H4120.1
C3—N1—H1A109.5C6—C5—C4120.00 (11)
C3—N1—H1B109.5C6—C5—H5120.0
H1A—N1—H1B109.5C4—C5—H5120.0
C3—N1—H1C109.5C5—C6—C7119.76 (12)
H1A—N1—H1C109.5C5—C6—H6120.1
H1B—N1—H1C109.5C7—C6—H6120.1
O2—C1—O1123.21 (11)C6—C7—C2121.25 (12)
O2—C1—C2122.48 (11)C6—C7—H7119.4
O1—C1—C2114.27 (10)C2—C7—H7119.4
C7—C2—C3118.21 (11)O4—P1—O3116.92 (5)
C7—C2—C1120.31 (11)O4—P1—O5107.62 (5)
C3—C2—C1121.42 (11)O3—P1—O5109.90 (5)
C4—C3—C2120.87 (11)O4—P1—H108.37
C4—C3—N1117.68 (10)O3—P1—H108.24
C2—C3—N1121.44 (10)O5—P1—H105.16
C3—C4—C5119.89 (11)P1—O5—H5O109.5
C3—C4—H4120.1
O2—C1—C2—C7168.18 (12)C2—C3—C4—C50.57 (19)
O1—C1—C2—C79.66 (16)N1—C3—C4—C5178.45 (11)
O2—C1—C2—C39.07 (18)C3—C4—C5—C60.83 (19)
O1—C1—C2—C3173.09 (11)C4—C5—C6—C71.1 (2)
C7—C2—C3—C41.67 (18)C5—C6—C7—C20.1 (2)
C1—C2—C3—C4175.63 (11)C3—C2—C7—C61.42 (18)
C7—C2—C3—N1177.31 (11)C1—C2—C7—C6175.92 (12)
C1—C2—C3—N15.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.841.772.6085 (13)178
N1—H1A···O40.911.962.8589 (14)169
N1—H1B···O4ii0.912.022.9160 (13)169
N1—H1C···O4iii0.911.972.8740 (14)173
O5—H5O···O3iv0.841.782.6059 (13)167
C6—H6···O5v0.952.553.2542 (15)132
C7—H7···O10.952.422.7503 (16)101
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y+2, z; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H8NO2+·H2PO3
Mr219.13
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.8757 (6), 9.4597 (6), 10.0801 (5)
α, β, γ (°)78.929 (3), 76.058 (4), 86.814 (2)
V3)442.81 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.25 × 0.18 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Saphire2
diffractometer
Absorption correctionIntegration
(ABSORB; DeTitta, 1985)
Tmin, Tmax0.972, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11058, 2581, 2559
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.07
No. of reflections2581
No. of parameters127
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.58, 0.24

Computer programs: KappaCCD Server Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.841.772.6085 (13)178
N1—H1A···O40.911.962.8589 (14)169
N1—H1B···O4ii0.912.022.9160 (13)169
N1—H1C···O4iii0.911.972.8740 (14)173
O5—H5O···O3iv0.841.782.6059 (13)167
C6—H6···O5v0.952.553.2542 (15)132
C7—H7···O10.952.422.7503 (16)101
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y+2, z; (v) x, y+1, z+1.
 

Acknowledgements

We wish to thank Dr C. Lecomte of LCM3B (UMR UHP –CNRS 7036), Faculté des Sciences et Techniques 54506 Vandoeuvre-lès-Nancy CEDEX, for providing diffraction facilities in his laboratory, and le Centre Universitaire de Khenchela for financial support.

References

First citationBenali-Cherif, N., Direm, A., Allouche, F., Boukli-H-Benmenni, L. & Soudani, K. (2007). Acta Cryst. E63, o2054–o2056.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenali-Cherif, N., Direm, A., Allouche, F. & Soudani, K. (2007). Acta Cryst. E63, o2272–o2274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBendheif, L., Benali-Cherif, N., Benguedouar, L., Bouchouit, K. & Merazig, H. (2003). Acta Cryst. E59, o141–o142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBendeif, E.-E., Lecomte, C. & Dahaoui, S. (2009). Acta Cryst. B65, 59–67.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCongiu, C., Cocco, M. T., Lilliu, V. & Onnis, V. (2005). J. Med. Chem. 48, 8245–8252.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHe, L., Sato, K., Abo, M., Okubo, A. & Yamazaki, S. (2003). Anal. Biochem. 314, 128–134.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKagan, C. R., Mitzi, D. B. C. & Dimitrakopoulos, C. D. (1999). Science, 286, 945–947.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazeaud, A., Dromzee, Y. & Thouvenot, R. (2000). Inorg. Chem. 39, 4735–4740.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNittoli, T., Curran, K., Insaf, S., DiGrandi, M., Orlowski, M., Chopra, R., Agarwal, A., Howe, A. Y. M., Prashad, A., Floyd, M. B., Johnson, B., Sutherland, A., Wheless, K., Feld, B., O'Connell, J., Mansour, T. S. & Bloom, J. (2005). J. Med. Chem. 48, 7560–7581.  Web of Science PubMed Google Scholar
First citationNonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiklund, P. & Bergman, J. (2004). Tetrahedron, 45, 969–972.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o664-o665
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds