organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o695-o696

(8aS)-7,8,8a,9-Tetra­hydro­thieno[3,2-f]indolizin-6(4H)-one

aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, bInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, Bratislava, Slovak Republic 81237, and cInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: viktor.vrabel@stuba.sk

(Received 16 February 2009; accepted 28 February 2009; online 6 March 2009)

In the mol­ecular structure of the title compound, C10H11NOS, the central six-membered ring of the indolizine unit adopts an envelope conformation, the maximum deviations from the mean plane of the ring being 0.533 (2) Å. The fused thieno ring is nearly coplanar [mean deviation = 0.007 (2) Å]. The conformation of the fused oxopyrrolidine ring is close to that of a flat-envelope, with a maximum deviation of 0.339 (3) Å. The crystal structure is stabilized by C—H⋯O hydrogen bonds.

Related literature

For general applications of indolizine derivatives, see: Brandi et al. (1995[Brandi, A., Cicchi, S., Cordero, F. M., Frignoli, R., Goti, A., Picasso, S. & Vogel, P. (1995). J. Org. Chem. 60, 6806-6812.]); Campagna et al. (1990[Campagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97-107.]); Couture et al. (2000[Couture, A., Deniau, E., Grandclaudon, P., Leburn, S., Leonce, S., Renard, P. & Pfeiffer, B. (2000). Bioorg. Med. Chem. 8, 2113-2125.]); Gubin et al. (1992[Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981-988.]); Gundersen et al. (2003[Gundersen, L. L., Negussie, A. H., Rise, F. & Ostby, O. B. (2003). Arch. Pharm. (Weinheim), 336, 191-195.]); Gupta et al. (2003[Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867-873.]); Hema et al. (2003[Hema, R., Parthasarathi, V., Sarkunam, K., Nallu, M. & Linden, A. (2003). Acta Cryst. C59, o703-o705.]); Hempel et al. (1993[Hempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (1993). J. Med. Chem. 36, 4082-4086.]); Jorgensen et al. (2000[Jorgensen, A. S., Jacobsen, P., Chirstiansen, L. B., Bury, P. S., Kanstrup, A., Thorp, S. M., Bain, S., Naerum, L. & Wasserman, K. (2000). Bioorg. Med. Chem. Lett. 10, 399-402.]); Malonne et al. (1998[Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241-243.]); Marchalín et al. (2008[Marchalín, Š., Szemes, F., Bar, N. & Decroix, B. (2008). Heterocycles, 50, 445-452.]); Medda et al. (2003[Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Pearson & Guo (2001[Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267-8271.]); Poty et al. (1994[Poty, C., Gibon, V., Evrard, G., Norberg, B., Vercauteren, D. P., Gubin, J., Chatelain, P. & Durant, F. (1994). Eur. J. Med. Chem. 29, 911-923.]); Rosseels et al. (1982[Rosseels, G., Peiren, M., Inion, H., Deray, E., Prost, M., Descamps, M., Bauthier, J., Richard, J., Tornay, C., Colot, M. & Claviere, M. (1982). Eur. J. Med. Chem. 17, 581-584.]); Sonnet et al. (2000[Sonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945-955.]); Vlahovici et al. (2002[Vlahovici, A., Andrei, M. & Druta, I. (2002). J. Lumin. 96, 279-285.]); Vrábel et al. (2004[Vrábel, V., Kožíšek, J., Langer, V. & Marchalín, Š. (2004). Acta Cryst. E60, o932-o933.]); Švorc et al. (2007[Švorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Žúžiová, J. (2007). Acta Cryst. E63, o1452-o1454.]). For bond-length data, see: Brown & Corbridge (1954[Brown, C. J. & Corbridge, D. E. C. (1954). Acta Cryst. 7, 711-715.]); Pedersen (1967[Pedersen, B. F. (1967). Acta Chem. Scand. 21, 1415-1424.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NOS

  • Mr = 193.26

  • Triclinic, [P \overline 1]

  • a = 6.37912 (16) Å

  • b = 8.3654 (3) Å

  • c = 9.0715 (3) Å

  • α = 84.180 (3)°

  • β = 78.611 (2)°

  • γ = 76.174 (3)°

  • V = 460.06 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.42 × 0.32 × 0.14 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.824, Tmax = 0.928

  • 20197 measured reflections

  • 2348 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.06

  • 2348 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.93 2.60 3.379 (2) 142
Symmetry code: (i) -x, -y+2, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Indolizines, the nitrogen containing heterocyclic systems, are widely distributed in nature; in particular, indolizine derivatives are an important class of heterocyclic bioactive compounds with a wide range of applications, such as pharmaceutical drugs, potential central nervous system depressants, calcium entry blockers, cardiovascular agents, spectral sensitizers and novel dyes (Gubin et al., 1992; Gupta et al., 2003; Poty et al., 1994; Hema et al., 2003). Polycyclic indolizine derivatives have been found to have high-efficiency long-wavelength fluorescence quantum yield (Vlahovici et al., 2002). Several polyhydroxylated indolizines are interesting as inhibitors of glycosides (Hempel et al., 1993; Brandi et al., 1995). They have also been tested as antimycobacterial agents against mycobacterial tuberculosis (Gundersen et al., 2003), for the treatment of angina pectoris (Rosseels et al., 1982), aromatase inhibitory (Sonnet et al., 2000), antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), analgestic (Campagna et al., 1990) and antitumor (Pearson & Guo, 2001) activities. The other well known pharmacological applications associated with this ring compounds are well documented in the literature (Couture et al., 2000; Jorgensen et al., 2000). These findings had led to a spate of synthetic and structural studies of various indolizine analogues.

Based on these facts and in continutation of our interest in developing simple and efficient routes for the synthesis of novel indolizine derivatives, we report here the synthesis, molecular and crystal structure of the title compound, (I). The absolute configuration is known from the synthesis and is depicted in the scheme and Figure 1. The expected stereochemistry of atom C5 was confirmed as S. The central N-heterocyclic ring is not planar and adopts an envelope conformation (Nardelli, 1983). A calculation of least-squares planes shows that this ring is puckered in such a manner that the five atoms N1, C11, C10, C7 and C6 are coplanar to within 0.032 (3) Å, while atom C5 is displaced from this plane with out-of-plane displacement of 0.533 (2) Å. The fused thieno ring is nearly coplanar [mean deviation = 0.007 (2) Å]. The oxopyrrolidine ring attached to the indolizine ring system has flat-envelope conformation with atom C5 on the flap. The deviation of atom C5 from the mean plane of the remaining four atoms N1/C2/C3/C4 is 0.339 (3) Å. The N1—C5 and N1—C11 bonds are approximately equivalent and both are much longer than the N1—C2 bond. Moreover, the N1 atom is sp2 hybridized, as evidenced by the sum of the valence angles around it [356.1 (1)°]. These data are consistent with conjugation of the lone-pair electrons on N1 with the adjacent carbonyl and agree with literature values for simple amides (Brown & Corbridge, 1954; Pedersen, 1967). The bond length of the carbonyl group C2=O1 is 1.224 (2) Å, respectively, is somewhat longer than typical carbonyl bonds. This may be due to the fact that atom O1 participates in intermolecular C–H···O hydrogen bonds with atom C9 (Table 2). The bond lengths and angles in the molecule are comparable with those in a related structure (Vrábel et al., 2004,Švorc et al., 2007).

Related literature top

For general applications of Indolizine derivatives, see: Brandi et al. (1995); Brown & Corbridge (1954); Campagna et al. (1990); Couture et al. (2000); Gubin et al. (1992); Gundersen et al. (2003); Gupta et al. (2003); Hema et al. (2003); Hempel et al. (1993); Jorgensen et al. (2000); Malonne et al. (1998); Marchalín et al. (2008); Medda et al. (2003); Nardelli (1983); Pearson & Guo (2001); Pedersen (1967); Poty et al. (1994); Rosseels et al. (1982); Sonnet et al. (2000); Vlahovici et al. (2002); Vrábel et al. (2004); Švorc et al. (2007).

Experimental top

Triethylsilane (2.4 ml, 15 mmol) was added to a stirred solution of alcohol (2.1 g, 10 mmol) in trifluoroacetic acid (20 ml) at 0 °C, and the resulting yellow solution was stirred at rt for 2 h. The reaction mixture was concentrated in vacuo, diluted with water (50 ml), made alkaline with 10% Na2CO3, and then extracted with dichloromethane (3 x 50 ml). The extract was washed with water, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by flash chromatography on a silica gel column eluting with dichloromethane. Recrystallization of a solid from cyclohexane gaves amide as colorless crystals (Marchalín et al. 2008).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 - 0.98Å and Uiso set at 1.2Ueq of the parent atom. The absolute configuration could not be reliably determined for this compound using Mo radiation, and has been assigned according to the synthesis.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).
(8aS)-7,8,8a,9-tetrahydrothieno[3,2-f]indolizin-6(4H)-one top
Crystal data top
C10H11NOSZ = 2
Mr = 193.26F(000) = 204
Triclinic, P1Dx = 1.395 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.37912 (16) ÅCell parameters from 12211 reflections
b = 8.3654 (3) Åθ = 3.3–29.4°
c = 9.0715 (3) ŵ = 0.31 mm1
α = 84.180 (3)°T = 298 K
β = 78.611 (2)°Block, colourless
γ = 76.174 (3)°0.42 × 0.32 × 0.14 mm
V = 460.06 (3) Å3
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2348 independent reflections
Radiation source: fine-focus sealed tube1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.4340 pixels mm-1θmax = 29.5°, θmin = 3.3°
Rotation method data acquisition using ω and ϕ scansh = 88
Absorption correction: analytical
(Clark & Reid, 1995)
k = 1111
Tmin = 0.824, Tmax = 0.928l = 1212
20197 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.1103P]
where P = (Fo2 + 2Fc2)/3
2348 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H11NOSγ = 76.174 (3)°
Mr = 193.26V = 460.06 (3) Å3
Triclinic, P1Z = 2
a = 6.37912 (16) ÅMo Kα radiation
b = 8.3654 (3) ŵ = 0.31 mm1
c = 9.0715 (3) ÅT = 298 K
α = 84.180 (3)°0.42 × 0.32 × 0.14 mm
β = 78.611 (2)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2348 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
1918 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.928Rint = 0.018
20197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
2348 reflectionsΔρmin = 0.21 e Å3
118 parameters
Special details top

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)

The absolute configuration could not be reliably determined for this compound using Mo-radiation, and has been assigned according to the synthesis.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1565 (3)0.7697 (2)1.25520 (17)0.0449 (4)
C30.2584 (3)0.6972 (2)1.39075 (18)0.0519 (4)
H3B0.18630.61331.44490.062*
H3A0.24850.78211.45880.062*
C40.4980 (3)0.6222 (2)1.32515 (17)0.0482 (4)
H4B0.59520.63731.38990.058*
H4A0.51960.50541.31200.058*
C50.5387 (2)0.7177 (2)1.17316 (16)0.0411 (3)
H5A0.58410.81801.18800.049*
C60.7046 (2)0.6242 (2)1.05152 (16)0.0437 (3)
H6B0.85190.62051.06710.052*
H6A0.68660.51181.05510.052*
C70.6721 (2)0.70843 (18)0.90130 (16)0.0397 (3)
C80.6992 (3)0.8129 (2)0.63501 (19)0.0548 (4)
H8A0.73850.83950.53280.066*
C90.4964 (3)0.8674 (2)0.71745 (17)0.0481 (4)
H9A0.38070.93620.67790.058*
C100.4802 (2)0.80769 (17)0.87139 (16)0.0370 (3)
C110.2797 (2)0.84994 (19)0.99057 (16)0.0413 (3)
H11B0.24130.96801.00200.050*
H11A0.15770.81930.96030.050*
N10.31810 (18)0.76400 (15)1.13355 (13)0.0369 (3)
O10.03879 (19)0.82620 (19)1.25376 (15)0.0653 (4)
S10.87330 (7)0.68901 (6)0.74263 (5)0.05585 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0358 (8)0.0559 (9)0.0399 (8)0.0084 (6)0.0014 (6)0.0036 (6)
C30.0459 (9)0.0707 (11)0.0334 (7)0.0092 (8)0.0004 (6)0.0006 (7)
C40.0413 (8)0.0636 (10)0.0350 (7)0.0049 (7)0.0079 (6)0.0042 (7)
C50.0320 (7)0.0511 (8)0.0376 (7)0.0046 (6)0.0068 (6)0.0004 (6)
C60.0346 (7)0.0518 (8)0.0373 (7)0.0008 (6)0.0045 (6)0.0026 (6)
C70.0367 (7)0.0445 (8)0.0326 (7)0.0041 (6)0.0008 (5)0.0010 (5)
C80.0668 (11)0.0585 (10)0.0321 (7)0.0093 (8)0.0013 (7)0.0036 (7)
C90.0583 (10)0.0458 (8)0.0356 (7)0.0038 (7)0.0100 (7)0.0035 (6)
C100.0392 (7)0.0362 (7)0.0335 (7)0.0055 (5)0.0056 (5)0.0007 (5)
C110.0356 (7)0.0445 (8)0.0385 (7)0.0007 (6)0.0070 (6)0.0028 (6)
N10.0290 (6)0.0456 (6)0.0328 (6)0.0039 (5)0.0047 (4)0.0009 (5)
O10.0320 (6)0.0977 (10)0.0558 (7)0.0034 (6)0.0003 (5)0.0010 (7)
S10.0463 (3)0.0700 (3)0.0387 (2)0.00116 (19)0.00624 (17)0.00050 (18)
Geometric parameters (Å, º) top
C2—O11.2244 (19)C6—H6B0.9700
C2—N11.3494 (19)C6—H6A0.9700
C2—C31.509 (2)C7—C101.364 (2)
C3—C41.531 (2)C7—S11.7216 (15)
C3—H3B0.9700C8—C91.359 (3)
C3—H3A0.9700C8—S11.7127 (19)
C4—C51.530 (2)C8—H8A0.9300
C4—H4B0.9700C9—C101.4271 (19)
C4—H4A0.9700C9—H9A0.9300
C5—N11.4730 (18)C10—C111.4983 (19)
C5—C61.506 (2)C11—N11.4530 (18)
C5—H5A0.9800C11—H11B0.9700
C6—C71.498 (2)C11—H11A0.9700
O1—C2—N1124.92 (15)C5—C6—H6A109.9
O1—C2—C3126.64 (15)H6B—C6—H6A108.3
N1—C2—C3108.44 (13)C10—C7—C6124.86 (13)
C2—C3—C4104.44 (13)C10—C7—S1111.24 (11)
C2—C3—H3B110.9C6—C7—S1123.89 (11)
C4—C3—H3B110.9C9—C8—S1111.60 (12)
C2—C3—H3A110.9C9—C8—H8A124.2
C4—C3—H3A110.9S1—C8—H8A124.2
H3B—C3—H3A108.9C8—C9—C10112.69 (15)
C5—C4—C3103.88 (13)C8—C9—H9A123.7
C5—C4—H4B111.0C10—C9—H9A123.7
C3—C4—H4B111.0C7—C10—C9112.41 (14)
C5—C4—H4A111.0C7—C10—C11122.46 (13)
C3—C4—H4A111.0C9—C10—C11125.11 (13)
H4B—C4—H4A109.0N1—C11—C10110.65 (12)
N1—C5—C6111.65 (12)N1—C11—H11B109.5
N1—C5—C4102.22 (12)C10—C11—H11B109.5
C6—C5—C4115.73 (14)N1—C11—H11A109.5
N1—C5—H5A109.0C10—C11—H11A109.5
C6—C5—H5A109.0H11B—C11—H11A108.1
C4—C5—H5A109.0C2—N1—C11122.02 (12)
C7—C6—C5109.13 (12)C2—N1—C5112.77 (12)
C7—C6—H6B109.9C11—N1—C5121.72 (12)
C5—C6—H6B109.9C8—S1—C792.04 (8)
C7—C6—H6A109.9
O1—C2—C3—C4171.40 (18)C7—C10—C11—N13.3 (2)
N1—C2—C3—C49.31 (19)C9—C10—C11—N1178.30 (14)
C2—C3—C4—C523.40 (19)O1—C2—N1—C1110.3 (3)
C3—C4—C5—N128.18 (17)C3—C2—N1—C11168.98 (14)
C3—C4—C5—C6149.74 (14)O1—C2—N1—C5169.56 (17)
N1—C5—C6—C744.61 (18)C3—C2—N1—C59.74 (18)
C4—C5—C6—C7160.97 (13)C10—C11—N1—C2173.84 (13)
C5—C6—C7—C1024.2 (2)C10—C11—N1—C528.76 (19)
C5—C6—C7—S1156.95 (12)C6—C5—N1—C2148.74 (14)
S1—C8—C9—C100.2 (2)C4—C5—N1—C224.42 (17)
C6—C7—C10—C9178.47 (14)C6—C5—N1—C1151.94 (19)
S1—C7—C10—C90.54 (17)C4—C5—N1—C11176.27 (13)
C6—C7—C10—C112.9 (2)C9—C8—S1—C70.39 (15)
S1—C7—C10—C11178.07 (11)C10—C7—S1—C80.53 (13)
C8—C9—C10—C70.3 (2)C6—C7—S1—C8178.49 (15)
C8—C9—C10—C11178.31 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.932.603.379 (2)142
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC10H11NOS
Mr193.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.37912 (16), 8.3654 (3), 9.0715 (3)
α, β, γ (°)84.180 (3), 78.611 (2), 76.174 (3)
V3)460.06 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.42 × 0.32 × 0.14
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.824, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
20197, 2348, 1918
Rint0.018
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.06
No. of reflections2348
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.932.603.379 (2)142.3
Symmetry code: (i) x, y+2, z+2.
 

Acknowledgements

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/0161/08 and 1/0817/08) and the Structural Funds, Interreg IIIA for financial support to purchase the diffractometer and the Development Agency under contract No. APVV-0210–07.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrandi, A., Cicchi, S., Cordero, F. M., Frignoli, R., Goti, A., Picasso, S. & Vogel, P. (1995). J. Org. Chem. 60, 6806–6812.  CrossRef CAS Web of Science Google Scholar
First citationBrown, C. J. & Corbridge, D. E. C. (1954). Acta Cryst. 7, 711–715.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCampagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97–107.  CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCouture, A., Deniau, E., Grandclaudon, P., Leburn, S., Leonce, S., Renard, P. & Pfeiffer, B. (2000). Bioorg. Med. Chem. 8, 2113–2125.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGundersen, L. L., Negussie, A. H., Rise, F. & Ostby, O. B. (2003). Arch. Pharm. (Weinheim), 336, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHema, R., Parthasarathi, V., Sarkunam, K., Nallu, M. & Linden, A. (2003). Acta Cryst. C59, o703–o705.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (1993). J. Med. Chem. 36, 4082–4086.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationJorgensen, A. S., Jacobsen, P., Chirstiansen, L. B., Bury, P. S., Kanstrup, A., Thorp, S. M., Bain, S., Naerum, L. & Wasserman, K. (2000). Bioorg. Med. Chem. Lett. 10, 399–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–243.  CAS Google Scholar
First citationMarchalín, Š., Szemes, F., Bar, N. & Decroix, B. (2008). Heterocycles, 50, 445–452.  Google Scholar
First citationMedda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.  Web of Science CrossRef CAS Google Scholar
First citationPedersen, B. F. (1967). Acta Chem. Scand. 21, 1415–1424.  CrossRef CAS Web of Science Google Scholar
First citationPoty, C., Gibon, V., Evrard, G., Norberg, B., Vercauteren, D. P., Gubin, J., Chatelain, P. & Durant, F. (1994). Eur. J. Med. Chem. 29, 911–923.  CrossRef CAS Web of Science Google Scholar
First citationRosseels, G., Peiren, M., Inion, H., Deray, E., Prost, M., Descamps, M., Bauthier, J., Richard, J., Tornay, C., Colot, M. & Claviere, M. (1982). Eur. J. Med. Chem. 17, 581–584.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945–955.  Web of Science CrossRef PubMed CAS Google Scholar
First citationŠvorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Žúžiová, J. (2007). Acta Cryst. E63, o1452–o1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVlahovici, A., Andrei, M. & Druta, I. (2002). J. Lumin. 96, 279–285.  Web of Science CrossRef CAS Google Scholar
First citationVrábel, V., Kožíšek, J., Langer, V. & Marchalín, Š. (2004). Acta Cryst. E60, o932–o933.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o695-o696
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds