organic compounds
(8aS)-7,8,8a,9-Tetrahydrothieno[3,2-f]indolizin-6(4H)-one
aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, bInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, Bratislava, Slovak Republic 81237, and cInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: viktor.vrabel@stuba.sk
In the molecular structure of the title compound, C10H11NOS, the central six-membered ring of the indolizine unit adopts an the maximum deviations from the mean plane of the ring being 0.533 (2) Å. The fused thieno ring is nearly coplanar [mean deviation = 0.007 (2) Å]. The conformation of the fused oxopyrrolidine ring is close to that of a flat-envelope, with a maximum deviation of 0.339 (3) Å. The is stabilized by C—H⋯O hydrogen bonds.
Related literature
For general applications of indolizine derivatives, see: Brandi et al. (1995); Campagna et al. (1990); Couture et al. (2000); Gubin et al. (1992); Gundersen et al. (2003); Gupta et al. (2003); Hema et al. (2003); Hempel et al. (1993); Jorgensen et al. (2000); Malonne et al. (1998); Marchalín et al. (2008); Medda et al. (2003); Nardelli (1983); Pearson & Guo (2001); Poty et al. (1994); Rosseels et al. (1982); Sonnet et al. (2000); Vlahovici et al. (2002); Vrábel et al. (2004); Švorc et al. (2007). For bond-length data, see: Brown & Corbridge (1954); Pedersen (1967).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536809007405/bg2239sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007405/bg2239Isup2.hkl
Triethylsilane (2.4 ml, 15 mmol) was added to a stirred solution of alcohol (2.1 g, 10 mmol) in trifluoroacetic acid (20 ml) at 0 °C, and the resulting yellow solution was stirred at rt for 2 h. The reaction mixture was concentrated in vacuo, diluted with water (50 ml), made alkaline with 10% Na2CO3, and then extracted with dichloromethane (3 x 50 ml). The extract was washed with water, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by flash
on a silica gel column eluting with dichloromethane. Recrystallization of a solid from cyclohexane gaves amide as colorless crystals (Marchalín et al. 2008).All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 - 0.98Å and Uiso set at 1.2Ueq of the parent atom. The
could not be reliably determined for this compound using Mo radiation, and has been assigned according to the synthesis.Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).Fig. 1. Molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001). |
C10H11NOS | Z = 2 |
Mr = 193.26 | F(000) = 204 |
Triclinic, P1 | Dx = 1.395 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.37912 (16) Å | Cell parameters from 12211 reflections |
b = 8.3654 (3) Å | θ = 3.3–29.4° |
c = 9.0715 (3) Å | µ = 0.31 mm−1 |
α = 84.180 (3)° | T = 298 K |
β = 78.611 (2)° | Block, colourless |
γ = 76.174 (3)° | 0.42 × 0.32 × 0.14 mm |
V = 460.06 (3) Å3 |
Oxford Diffraction Gemini R CCD diffractometer | 2348 independent reflections |
Radiation source: fine-focus sealed tube | 1918 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 10.4340 pixels mm-1 | θmax = 29.5°, θmin = 3.3° |
Rotation method data acquisition using ω and ϕ scans | h = −8→8 |
Absorption correction: analytical (Clark & Reid, 1995) | k = −11→11 |
Tmin = 0.824, Tmax = 0.928 | l = −12→12 |
20197 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0629P)2 + 0.1103P] where P = (Fo2 + 2Fc2)/3 |
2348 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C10H11NOS | γ = 76.174 (3)° |
Mr = 193.26 | V = 460.06 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.37912 (16) Å | Mo Kα radiation |
b = 8.3654 (3) Å | µ = 0.31 mm−1 |
c = 9.0715 (3) Å | T = 298 K |
α = 84.180 (3)° | 0.42 × 0.32 × 0.14 mm |
β = 78.611 (2)° |
Oxford Diffraction Gemini R CCD diffractometer | 2348 independent reflections |
Absorption correction: analytical (Clark & Reid, 1995) | 1918 reflections with I > 2σ(I) |
Tmin = 0.824, Tmax = 0.928 | Rint = 0.018 |
20197 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.41 e Å−3 |
2348 reflections | Δρmin = −0.21 e Å−3 |
118 parameters |
Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006) The absolute configuration could not be reliably determined for this compound using Mo-radiation, and has been assigned according to the synthesis. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.1565 (3) | 0.7697 (2) | 1.25520 (17) | 0.0449 (4) | |
C3 | 0.2584 (3) | 0.6972 (2) | 1.39075 (18) | 0.0519 (4) | |
H3B | 0.1863 | 0.6133 | 1.4449 | 0.062* | |
H3A | 0.2485 | 0.7821 | 1.4588 | 0.062* | |
C4 | 0.4980 (3) | 0.6222 (2) | 1.32515 (17) | 0.0482 (4) | |
H4B | 0.5952 | 0.6373 | 1.3899 | 0.058* | |
H4A | 0.5196 | 0.5054 | 1.3120 | 0.058* | |
C5 | 0.5387 (2) | 0.7177 (2) | 1.17316 (16) | 0.0411 (3) | |
H5A | 0.5841 | 0.8180 | 1.1880 | 0.049* | |
C6 | 0.7046 (2) | 0.6242 (2) | 1.05152 (16) | 0.0437 (3) | |
H6B | 0.8519 | 0.6205 | 1.0671 | 0.052* | |
H6A | 0.6866 | 0.5118 | 1.0551 | 0.052* | |
C7 | 0.6721 (2) | 0.70843 (18) | 0.90130 (16) | 0.0397 (3) | |
C8 | 0.6992 (3) | 0.8129 (2) | 0.63501 (19) | 0.0548 (4) | |
H8A | 0.7385 | 0.8395 | 0.5328 | 0.066* | |
C9 | 0.4964 (3) | 0.8674 (2) | 0.71745 (17) | 0.0481 (4) | |
H9A | 0.3807 | 0.9362 | 0.6779 | 0.058* | |
C10 | 0.4802 (2) | 0.80769 (17) | 0.87139 (16) | 0.0370 (3) | |
C11 | 0.2797 (2) | 0.84994 (19) | 0.99057 (16) | 0.0413 (3) | |
H11B | 0.2413 | 0.9680 | 1.0020 | 0.050* | |
H11A | 0.1577 | 0.8193 | 0.9603 | 0.050* | |
N1 | 0.31810 (18) | 0.76400 (15) | 1.13355 (13) | 0.0369 (3) | |
O1 | −0.03879 (19) | 0.82620 (19) | 1.25376 (15) | 0.0653 (4) | |
S1 | 0.87330 (7) | 0.68901 (6) | 0.74263 (5) | 0.05585 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0358 (8) | 0.0559 (9) | 0.0399 (8) | −0.0084 (6) | −0.0014 (6) | −0.0036 (6) |
C3 | 0.0459 (9) | 0.0707 (11) | 0.0334 (7) | −0.0092 (8) | 0.0004 (6) | −0.0006 (7) |
C4 | 0.0413 (8) | 0.0636 (10) | 0.0350 (7) | −0.0049 (7) | −0.0079 (6) | 0.0042 (7) |
C5 | 0.0320 (7) | 0.0511 (8) | 0.0376 (7) | −0.0046 (6) | −0.0068 (6) | −0.0004 (6) |
C6 | 0.0346 (7) | 0.0518 (8) | 0.0373 (7) | 0.0008 (6) | −0.0045 (6) | 0.0026 (6) |
C7 | 0.0367 (7) | 0.0445 (8) | 0.0326 (7) | −0.0041 (6) | −0.0008 (5) | −0.0010 (5) |
C8 | 0.0668 (11) | 0.0585 (10) | 0.0321 (7) | −0.0093 (8) | −0.0013 (7) | 0.0036 (7) |
C9 | 0.0583 (10) | 0.0458 (8) | 0.0356 (7) | −0.0038 (7) | −0.0100 (7) | 0.0035 (6) |
C10 | 0.0392 (7) | 0.0362 (7) | 0.0335 (7) | −0.0055 (5) | −0.0056 (5) | −0.0007 (5) |
C11 | 0.0356 (7) | 0.0445 (8) | 0.0385 (7) | −0.0007 (6) | −0.0070 (6) | 0.0028 (6) |
N1 | 0.0290 (6) | 0.0456 (6) | 0.0328 (6) | −0.0039 (5) | −0.0047 (4) | 0.0009 (5) |
O1 | 0.0320 (6) | 0.0977 (10) | 0.0558 (7) | −0.0034 (6) | 0.0003 (5) | 0.0010 (7) |
S1 | 0.0463 (3) | 0.0700 (3) | 0.0387 (2) | −0.00116 (19) | 0.00624 (17) | −0.00050 (18) |
C2—O1 | 1.2244 (19) | C6—H6B | 0.9700 |
C2—N1 | 1.3494 (19) | C6—H6A | 0.9700 |
C2—C3 | 1.509 (2) | C7—C10 | 1.364 (2) |
C3—C4 | 1.531 (2) | C7—S1 | 1.7216 (15) |
C3—H3B | 0.9700 | C8—C9 | 1.359 (3) |
C3—H3A | 0.9700 | C8—S1 | 1.7127 (19) |
C4—C5 | 1.530 (2) | C8—H8A | 0.9300 |
C4—H4B | 0.9700 | C9—C10 | 1.4271 (19) |
C4—H4A | 0.9700 | C9—H9A | 0.9300 |
C5—N1 | 1.4730 (18) | C10—C11 | 1.4983 (19) |
C5—C6 | 1.506 (2) | C11—N1 | 1.4530 (18) |
C5—H5A | 0.9800 | C11—H11B | 0.9700 |
C6—C7 | 1.498 (2) | C11—H11A | 0.9700 |
O1—C2—N1 | 124.92 (15) | C5—C6—H6A | 109.9 |
O1—C2—C3 | 126.64 (15) | H6B—C6—H6A | 108.3 |
N1—C2—C3 | 108.44 (13) | C10—C7—C6 | 124.86 (13) |
C2—C3—C4 | 104.44 (13) | C10—C7—S1 | 111.24 (11) |
C2—C3—H3B | 110.9 | C6—C7—S1 | 123.89 (11) |
C4—C3—H3B | 110.9 | C9—C8—S1 | 111.60 (12) |
C2—C3—H3A | 110.9 | C9—C8—H8A | 124.2 |
C4—C3—H3A | 110.9 | S1—C8—H8A | 124.2 |
H3B—C3—H3A | 108.9 | C8—C9—C10 | 112.69 (15) |
C5—C4—C3 | 103.88 (13) | C8—C9—H9A | 123.7 |
C5—C4—H4B | 111.0 | C10—C9—H9A | 123.7 |
C3—C4—H4B | 111.0 | C7—C10—C9 | 112.41 (14) |
C5—C4—H4A | 111.0 | C7—C10—C11 | 122.46 (13) |
C3—C4—H4A | 111.0 | C9—C10—C11 | 125.11 (13) |
H4B—C4—H4A | 109.0 | N1—C11—C10 | 110.65 (12) |
N1—C5—C6 | 111.65 (12) | N1—C11—H11B | 109.5 |
N1—C5—C4 | 102.22 (12) | C10—C11—H11B | 109.5 |
C6—C5—C4 | 115.73 (14) | N1—C11—H11A | 109.5 |
N1—C5—H5A | 109.0 | C10—C11—H11A | 109.5 |
C6—C5—H5A | 109.0 | H11B—C11—H11A | 108.1 |
C4—C5—H5A | 109.0 | C2—N1—C11 | 122.02 (12) |
C7—C6—C5 | 109.13 (12) | C2—N1—C5 | 112.77 (12) |
C7—C6—H6B | 109.9 | C11—N1—C5 | 121.72 (12) |
C5—C6—H6B | 109.9 | C8—S1—C7 | 92.04 (8) |
C7—C6—H6A | 109.9 | ||
O1—C2—C3—C4 | 171.40 (18) | C7—C10—C11—N1 | −3.3 (2) |
N1—C2—C3—C4 | −9.31 (19) | C9—C10—C11—N1 | 178.30 (14) |
C2—C3—C4—C5 | 23.40 (19) | O1—C2—N1—C11 | 10.3 (3) |
C3—C4—C5—N1 | −28.18 (17) | C3—C2—N1—C11 | −168.98 (14) |
C3—C4—C5—C6 | −149.74 (14) | O1—C2—N1—C5 | 169.56 (17) |
N1—C5—C6—C7 | 44.61 (18) | C3—C2—N1—C5 | −9.74 (18) |
C4—C5—C6—C7 | 160.97 (13) | C10—C11—N1—C2 | −173.84 (13) |
C5—C6—C7—C10 | −24.2 (2) | C10—C11—N1—C5 | 28.76 (19) |
C5—C6—C7—S1 | 156.95 (12) | C6—C5—N1—C2 | 148.74 (14) |
S1—C8—C9—C10 | −0.2 (2) | C4—C5—N1—C2 | 24.42 (17) |
C6—C7—C10—C9 | −178.47 (14) | C6—C5—N1—C11 | −51.94 (19) |
S1—C7—C10—C9 | 0.54 (17) | C4—C5—N1—C11 | −176.27 (13) |
C6—C7—C10—C11 | 2.9 (2) | C9—C8—S1—C7 | 0.39 (15) |
S1—C7—C10—C11 | −178.07 (11) | C10—C7—S1—C8 | −0.53 (13) |
C8—C9—C10—C7 | −0.3 (2) | C6—C7—S1—C8 | 178.49 (15) |
C8—C9—C10—C11 | 178.31 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O1i | 0.93 | 2.60 | 3.379 (2) | 142 |
Symmetry code: (i) −x, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C10H11NOS |
Mr | 193.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 6.37912 (16), 8.3654 (3), 9.0715 (3) |
α, β, γ (°) | 84.180 (3), 78.611 (2), 76.174 (3) |
V (Å3) | 460.06 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.42 × 0.32 × 0.14 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R CCD diffractometer |
Absorption correction | Analytical (Clark & Reid, 1995) |
Tmin, Tmax | 0.824, 0.928 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20197, 2348, 1918 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.118, 1.06 |
No. of reflections | 2348 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.21 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O1i | 0.93 | 2.60 | 3.379 (2) | 142.3 |
Symmetry code: (i) −x, −y+2, −z+2. |
Acknowledgements
The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/0161/08 and 1/0817/08) and the Structural Funds, Interreg IIIA for financial support to purchase the diffractometer and the Development Agency under contract No. APVV-0210–07.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brandi, A., Cicchi, S., Cordero, F. M., Frignoli, R., Goti, A., Picasso, S. & Vogel, P. (1995). J. Org. Chem. 60, 6806–6812. CrossRef CAS Web of Science Google Scholar
Brown, C. J. & Corbridge, D. E. C. (1954). Acta Cryst. 7, 711–715. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Campagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97–107. CrossRef CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Couture, A., Deniau, E., Grandclaudon, P., Leburn, S., Leonce, S., Renard, P. & Pfeiffer, B. (2000). Bioorg. Med. Chem. 8, 2113–2125. Web of Science CrossRef PubMed CAS Google Scholar
Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988. CrossRef PubMed CAS Web of Science Google Scholar
Gundersen, L. L., Negussie, A. H., Rise, F. & Ostby, O. B. (2003). Arch. Pharm. (Weinheim), 336, 191–195. Web of Science CrossRef PubMed CAS Google Scholar
Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873. Web of Science CrossRef PubMed CAS Google Scholar
Hema, R., Parthasarathi, V., Sarkunam, K., Nallu, M. & Linden, A. (2003). Acta Cryst. C59, o703–o705. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (1993). J. Med. Chem. 36, 4082–4086. CSD CrossRef CAS PubMed Web of Science Google Scholar
Jorgensen, A. S., Jacobsen, P., Chirstiansen, L. B., Bury, P. S., Kanstrup, A., Thorp, S. M., Bain, S., Naerum, L. & Wasserman, K. (2000). Bioorg. Med. Chem. Lett. 10, 399–402. Web of Science CrossRef PubMed CAS Google Scholar
Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–243. CAS Google Scholar
Marchalín, Š., Szemes, F., Bar, N. & Decroix, B. (2008). Heterocycles, 50, 445–452. Google Scholar
Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128. Web of Science CrossRef PubMed CAS Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271. Web of Science CrossRef CAS Google Scholar
Pedersen, B. F. (1967). Acta Chem. Scand. 21, 1415–1424. CrossRef CAS Web of Science Google Scholar
Poty, C., Gibon, V., Evrard, G., Norberg, B., Vercauteren, D. P., Gubin, J., Chatelain, P. & Durant, F. (1994). Eur. J. Med. Chem. 29, 911–923. CrossRef CAS Web of Science Google Scholar
Rosseels, G., Peiren, M., Inion, H., Deray, E., Prost, M., Descamps, M., Bauthier, J., Richard, J., Tornay, C., Colot, M. & Claviere, M. (1982). Eur. J. Med. Chem. 17, 581–584. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945–955. Web of Science CrossRef PubMed CAS Google Scholar
Švorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Žúžiová, J. (2007). Acta Cryst. E63, o1452–o1454. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vlahovici, A., Andrei, M. & Druta, I. (2002). J. Lumin. 96, 279–285. Web of Science CrossRef CAS Google Scholar
Vrábel, V., Kožíšek, J., Langer, V. & Marchalín, Š. (2004). Acta Cryst. E60, o932–o933. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indolizines, the nitrogen containing heterocyclic systems, are widely distributed in nature; in particular, indolizine derivatives are an important class of heterocyclic bioactive compounds with a wide range of applications, such as pharmaceutical drugs, potential central nervous system depressants, calcium entry blockers, cardiovascular agents, spectral sensitizers and novel dyes (Gubin et al., 1992; Gupta et al., 2003; Poty et al., 1994; Hema et al., 2003). Polycyclic indolizine derivatives have been found to have high-efficiency long-wavelength fluorescence quantum yield (Vlahovici et al., 2002). Several polyhydroxylated indolizines are interesting as inhibitors of glycosides (Hempel et al., 1993; Brandi et al., 1995). They have also been tested as antimycobacterial agents against mycobacterial tuberculosis (Gundersen et al., 2003), for the treatment of angina pectoris (Rosseels et al., 1982), aromatase inhibitory (Sonnet et al., 2000), antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), analgestic (Campagna et al., 1990) and antitumor (Pearson & Guo, 2001) activities. The other well known pharmacological applications associated with this ring compounds are well documented in the literature (Couture et al., 2000; Jorgensen et al., 2000). These findings had led to a spate of synthetic and structural studies of various indolizine analogues.
Based on these facts and in continutation of our interest in developing simple and efficient routes for the synthesis of novel indolizine derivatives, we report here the synthesis, molecular and crystal structure of the title compound, (I). The absolute configuration is known from the synthesis and is depicted in the scheme and Figure 1. The expected stereochemistry of atom C5 was confirmed as S. The central N-heterocyclic ring is not planar and adopts an envelope conformation (Nardelli, 1983). A calculation of least-squares planes shows that this ring is puckered in such a manner that the five atoms N1, C11, C10, C7 and C6 are coplanar to within 0.032 (3) Å, while atom C5 is displaced from this plane with out-of-plane displacement of 0.533 (2) Å. The fused thieno ring is nearly coplanar [mean deviation = 0.007 (2) Å]. The oxopyrrolidine ring attached to the indolizine ring system has flat-envelope conformation with atom C5 on the flap. The deviation of atom C5 from the mean plane of the remaining four atoms N1/C2/C3/C4 is 0.339 (3) Å. The N1—C5 and N1—C11 bonds are approximately equivalent and both are much longer than the N1—C2 bond. Moreover, the N1 atom is sp2 hybridized, as evidenced by the sum of the valence angles around it [356.1 (1)°]. These data are consistent with conjugation of the lone-pair electrons on N1 with the adjacent carbonyl and agree with literature values for simple amides (Brown & Corbridge, 1954; Pedersen, 1967). The bond length of the carbonyl group C2=O1 is 1.224 (2) Å, respectively, is somewhat longer than typical carbonyl bonds. This may be due to the fact that atom O1 participates in intermolecular C–H···O hydrogen bonds with atom C9 (Table 2). The bond lengths and angles in the molecule are comparable with those in a related structure (Vrábel et al., 2004,Švorc et al., 2007).