metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m457-m458

Bis(2-hy­droxy-N′-iso­propylidenebenzo­hydrazidato-κ2N′,O)bis­­(pyridine-κN)cobalt(II)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn

(Received 19 February 2009; accepted 25 March 2009; online 28 March 2009)

In the title complex, [Co(C10H11N2O2)2(C5H5N)2], the CoII atom lies on a centre of symmetry and adopts a distorted cis-CoO2N4 octa­hedral geometry. The two acetone salicyloylhydrazone ligands are deprotonated and act as N,O-bidentate monoanionic ligands, forming the equatorial plane, while the axial positions are occupied by two N atoms of two pyridine mol­ecules. The complex presents O—H⋯N and C—H⋯N intra­molecular hydrogen bonds. Inter­molecular C—H⋯N and C—H⋯O inter­actions are also present in the crystal.

Related literature

For the crystal structure of acetone salicylhydrazone, see: Kraudelt et al. (1996[Kraudelt, H., Ludwig, E., Schilde, U. & Uhlemann, E. (1996). Z. Naturforsch. Teil B, 51, 563-566.]). For the crystal structure of iron and nickel complexes with related aroylhydrazone derivatives, see: Matoga et al. (2007[Matoga, D., Szklarzewicz, J., Stadnicka, K. & Shongwe, M. S. (2007). Inorg. Chem. pp. 9042-9044.]) and Liu et al. (2005[Liu, M.-L., Dou, J.-M., Wang, D.-Q. & Li, D.-C. (2005). Acta Cryst. E61, m1366-m1367.]), respectively. For the biological activity of aroylhydrazones, see: Armstrong et al. (2003[Armstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145-1156.]). For the crystal structure of 3-hydr­oxy-N-[phen­yl(2-pyrid­yl)methyl­ene]-2-naphthohydrazide, see: Kang et al. (2007[Kang, W.-J., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2007). Acta Cryst. E63, o3328.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H11N2O2)2(C5H5N)2]

  • Mr = 599.55

  • Monoclinic, P 21 /n

  • a = 7.7751 (9) Å

  • b = 10.0168 (15) Å

  • c = 18.751 (2) Å

  • β = 96.621 (2)°

  • V = 1450.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 298 K

  • 0.34 × 0.19 × 0.16 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.813, Tmax = 0.905

  • 7087 measured reflections

  • 2547 independent reflections

  • 1675 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.00

  • 2547 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.028 (2)
Co1—O1i 2.028 (2)
Co1—N2i 2.179 (2)
Co1—N2 2.179 (2)
Co1—N3 2.233 (2)
Co1—N3i 2.233 (2)
Symmetry code: (i) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.81 2.536 (3) 147
C11—H11⋯N2 0.93 2.56 3.157 (4) 123
C9—H9A⋯O1i 0.96 2.23 3.159 (4) 164
C15—H15⋯N2i 0.93 2.54 3.137 (4) 123
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aroylhydrazone and their metal complexes are of great importance owing to the wide spread applications in the fields of coordination chemistry and their biological activities. As an extension of our work on the structural characterization of aroylhydrazone derivatives (Liu et al., 2005; Kang et al., 2007), the title compound (I) was synthesized.

Fig. 1 shows a molecular view of (I). The complex consists of one Co cation lying on a centre of symmetry [symmetry code: -x, 1 - y, -z], two acetone salicyloyl hydrazone ligands and two coordinated pyridine molecules. The monoanionic ligand (which is in its enol form, (C1—O1: 1.270 (3) Å) acts as bidentate forming the equatorial plane (Co1—O1(2.028 (2) Å and Co1—N2(2.179 (2) Å). Two pyridine molecules coordinate in the axial positions, the axial bond length (Co1—N3 2.233 (2) Å) being slightly longer than those of in the equatorial plane. In addition anumber of intramolecular (conventional) O—H···N and (non conventional) C—H···N, C—H···O H-bonds are found in the complex (Table 1).

Related literature top

For the crystal structure of acetone salicylhydrazone, see: Kraudelt et al. (1996). For the crystal structure of iron and nickel complexes with related aroylhydrazone derivatives, see: Matoga et al. (2007) and Liu et al. (2005), respectively. For the biological activity of aroylhydrazones, see: Armstrong et al. (2003). For the crystal structure of 3-hydroxy-N-[phenyl(2-pyridyl)methylene]-2-naphthohydrazide, see: Kang et al. (2007).

Experimental top

To a stirred 10 ml pyridine solution of acetone salicyloylhydrazone (0.0384 g,0.2 mmol), 10 ml methanol solution of cobalt dichloride (0.0245 g,0.1 mmol) was added dropwise. The reaction mixture was stirred for 4 h at room temperature and then filtered. Brown single crystals were obtained from the filtrate after three weeks. Anal. Calcd (%) for C30H32O4N6Co (Mr = 599.55): C, 60.10; H, 5.38; N, 14.02; Found (%): C, 60.09; H, 5.38; N, 14.03

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with O—H 0.82 C—H 0.96 Å (methyl) [Uiso(H) = 1.5Ueq(C, O)] and C—H 0.93 (phenyl and pyridine) 0.93Å [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled ones by symmetry operation (-x, 1 - y, -z). C-bound H atoms have been omitted for clarity.
Bis(2-hydroxy-N'-isopropylidenebenzohydrazidato- κ2N',O)bis(pyridine-κN)cobalt(II) top
Crystal data top
[Co(C10H11N2O2)2(C5H5N)2]F(000) = 626
Mr = 599.55Dx = 1.373 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1792 reflections
a = 7.7751 (9) Åθ = 2.3–21.6°
b = 10.0168 (15) ŵ = 0.64 mm1
c = 18.751 (2) ÅT = 298 K
β = 96.621 (2)°Block, brown
V = 1450.6 (3) Å30.34 × 0.19 × 0.16 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
2547 independent reflections
Radiation source: fine-focus sealed tube1675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.813, Tmax = 0.905k = 1111
7087 measured reflectionsl = 1122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.046P)2 + 0.3767P]
where P = (Fo2 + 2Fc2)/3
2547 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Co(C10H11N2O2)2(C5H5N)2]V = 1450.6 (3) Å3
Mr = 599.55Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.7751 (9) ŵ = 0.64 mm1
b = 10.0168 (15) ÅT = 298 K
c = 18.751 (2) Å0.34 × 0.19 × 0.16 mm
β = 96.621 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2547 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1675 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.905Rint = 0.039
7087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
2547 reflectionsΔρmin = 0.24 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.50000.00000.0385 (2)
N10.0380 (3)0.7734 (2)0.06265 (13)0.0414 (6)
N20.1297 (3)0.6915 (2)0.01957 (13)0.0423 (6)
N30.1601 (3)0.4115 (2)0.09485 (13)0.0437 (6)
O10.1480 (2)0.59481 (19)0.06648 (11)0.0461 (5)
O20.0353 (3)0.9926 (2)0.11969 (14)0.0671 (7)
H20.01620.94150.09540.101*
C10.1001 (4)0.7132 (3)0.08301 (15)0.0386 (7)
C20.2036 (4)0.7937 (3)0.12879 (16)0.0413 (7)
C30.1665 (5)0.9282 (3)0.14443 (18)0.0517 (9)
C40.2665 (5)0.9984 (4)0.1888 (2)0.0663 (10)
H40.24361.08810.19850.080*
C50.3972 (6)0.9365 (4)0.2178 (2)0.0767 (12)
H50.46190.98410.24790.092*
C60.4357 (5)0.8035 (4)0.2032 (2)0.0748 (11)
H60.52540.76150.22330.090*
C70.3389 (4)0.7348 (3)0.15852 (18)0.0564 (9)
H70.36550.64590.14800.068*
C80.2667 (4)0.7445 (3)0.00010 (18)0.0499 (8)
C90.3747 (5)0.6670 (4)0.0454 (2)0.0804 (12)
H9A0.32730.57900.05300.121*
H9B0.49070.66080.02180.121*
H9C0.37600.71110.09080.121*
C100.3260 (5)0.8822 (3)0.0211 (2)0.0697 (11)
H10A0.24580.94610.00180.105*
H10B0.43860.89720.00640.105*
H10C0.33170.89180.07230.105*
C110.2490 (4)0.4881 (3)0.14411 (17)0.0553 (9)
H110.24100.58030.13880.066*
C120.3514 (4)0.4381 (4)0.20208 (19)0.0621 (10)
H120.41030.49570.23530.074*
C130.3666 (4)0.3029 (3)0.21092 (19)0.0620 (10)
H130.43650.26690.24980.074*
C140.2763 (4)0.2223 (3)0.16120 (18)0.0593 (9)
H140.28330.12990.16550.071*
C150.1749 (4)0.2803 (3)0.10463 (18)0.0520 (9)
H150.11310.22450.07130.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0379 (3)0.0375 (3)0.0410 (4)0.0085 (3)0.0080 (2)0.0035 (3)
N10.0431 (15)0.0393 (13)0.0413 (15)0.0086 (12)0.0032 (12)0.0028 (13)
N20.0413 (15)0.0419 (14)0.0440 (15)0.0102 (12)0.0055 (12)0.0017 (12)
N30.0434 (15)0.0448 (15)0.0427 (16)0.0065 (12)0.0039 (12)0.0008 (13)
O10.0472 (12)0.0390 (12)0.0549 (14)0.0114 (10)0.0177 (10)0.0065 (11)
O20.0715 (16)0.0431 (13)0.0864 (18)0.0074 (12)0.0079 (14)0.0139 (13)
C10.0430 (18)0.0383 (17)0.0333 (17)0.0019 (14)0.0011 (14)0.0028 (14)
C20.0469 (18)0.0400 (17)0.0357 (17)0.0033 (14)0.0002 (14)0.0022 (15)
C30.057 (2)0.049 (2)0.046 (2)0.0038 (17)0.0061 (17)0.0022 (17)
C40.081 (3)0.052 (2)0.064 (2)0.016 (2)0.000 (2)0.017 (2)
C50.086 (3)0.086 (3)0.060 (3)0.034 (3)0.016 (2)0.009 (2)
C60.081 (3)0.070 (3)0.079 (3)0.015 (2)0.035 (2)0.005 (2)
C70.063 (2)0.050 (2)0.059 (2)0.0054 (17)0.0165 (18)0.0016 (18)
C80.0446 (19)0.051 (2)0.054 (2)0.0164 (16)0.0066 (16)0.0036 (17)
C90.064 (2)0.077 (3)0.106 (3)0.024 (2)0.035 (2)0.010 (3)
C100.064 (2)0.057 (2)0.089 (3)0.0276 (18)0.011 (2)0.001 (2)
C110.061 (2)0.0479 (19)0.053 (2)0.0063 (17)0.0081 (17)0.0033 (19)
C120.067 (2)0.064 (2)0.051 (2)0.0071 (19)0.0117 (19)0.0052 (19)
C130.065 (2)0.066 (2)0.052 (2)0.0037 (19)0.0074 (18)0.009 (2)
C140.065 (2)0.050 (2)0.061 (2)0.0064 (17)0.0011 (19)0.0112 (19)
C150.057 (2)0.048 (2)0.050 (2)0.0099 (16)0.0015 (17)0.0015 (17)
Geometric parameters (Å, º) top
Co1—O12.028 (2)C5—H50.9300
Co1—O1i2.028 (2)C6—C71.374 (5)
Co1—N2i2.179 (2)C6—H60.9300
Co1—N22.179 (2)C7—H70.9300
Co1—N32.233 (2)C8—C91.483 (5)
Co1—N3i2.233 (2)C8—C101.492 (4)
N1—C11.326 (3)C9—H9A0.9600
N1—N21.403 (3)C9—H9B0.9600
N2—C81.280 (4)C9—H9C0.9600
N3—C151.330 (4)C10—H10A0.9600
N3—C111.332 (3)C10—H10B0.9600
O1—C11.270 (3)C10—H10C0.9600
O2—C31.335 (4)C11—C121.366 (4)
O2—H20.8200C11—H110.9300
C1—C21.481 (4)C12—C131.368 (5)
C2—C71.379 (4)C12—H120.9300
C2—C31.402 (4)C13—C141.365 (4)
C3—C41.392 (5)C13—H130.9300
C4—C51.357 (5)C14—C151.375 (4)
C4—H40.9300C14—H140.9300
C5—C61.386 (5)C15—H150.9300
O1—Co1—O1i180.00 (9)C6—C5—H5119.5
O1—Co1—N2i103.38 (8)C7—C6—C5118.7 (4)
O1i—Co1—N2i76.62 (8)C7—C6—H6120.6
O1—Co1—N276.62 (8)C5—C6—H6120.6
O1i—Co1—N2103.38 (8)C6—C7—C2122.0 (3)
N2i—Co1—N2180.00 (13)C6—C7—H7119.0
O1—Co1—N390.00 (9)C2—C7—H7119.0
O1i—Co1—N390.00 (9)N2—C8—C9119.4 (3)
N2i—Co1—N389.38 (9)N2—C8—C10123.4 (3)
N2—Co1—N390.62 (9)C9—C8—C10117.2 (3)
O1—Co1—N3i90.00 (9)C8—C9—H9A109.5
O1i—Co1—N3i90.00 (9)C8—C9—H9B109.5
N2i—Co1—N3i90.62 (9)H9A—C9—H9B109.5
N2—Co1—N3i89.38 (9)C8—C9—H9C109.5
N3—Co1—N3i180.0H9A—C9—H9C109.5
C1—N1—N2112.5 (2)H9B—C9—H9C109.5
C8—N2—N1114.6 (2)C8—C10—H10A109.5
C8—N2—Co1134.5 (2)C8—C10—H10B109.5
N1—N2—Co1110.84 (16)H10A—C10—H10B109.5
C15—N3—C11116.4 (3)C8—C10—H10C109.5
C15—N3—Co1122.3 (2)H10A—C10—H10C109.5
C11—N3—Co1121.4 (2)H10B—C10—H10C109.5
C1—O1—Co1114.58 (18)N3—C11—C12123.3 (3)
C3—O2—H2109.5N3—C11—H11118.4
O1—C1—N1125.4 (3)C12—C11—H11118.4
O1—C1—C2119.1 (3)C11—C12—C13119.6 (3)
N1—C1—C2115.5 (3)C11—C12—H12120.2
C7—C2—C3118.3 (3)C13—C12—H12120.2
C7—C2—C1119.5 (3)C14—C13—C12118.2 (3)
C3—C2—C1122.2 (3)C14—C13—H13120.9
O2—C3—C4117.8 (3)C12—C13—H13120.9
O2—C3—C2122.6 (3)C13—C14—C15118.7 (3)
C4—C3—C2119.6 (4)C13—C14—H14120.6
C5—C4—C3120.3 (4)C15—C14—H14120.6
C5—C4—H4119.8N3—C15—C14123.8 (3)
C3—C4—H4119.8N3—C15—H15118.1
C4—C5—C6121.0 (4)C14—C15—H15118.1
C4—C5—H5119.5
C1—N1—N2—C8178.4 (3)N1—C1—C2—C7173.4 (3)
C1—N1—N2—Co12.4 (3)O1—C1—C2—C3174.8 (3)
O1—Co1—N2—C8178.1 (3)N1—C1—C2—C35.3 (4)
O1i—Co1—N2—C81.9 (3)C7—C2—C3—O2178.2 (3)
N3—Co1—N2—C888.3 (3)C1—C2—C3—O20.5 (5)
N3i—Co1—N2—C891.7 (3)C7—C2—C3—C40.3 (5)
O1—Co1—N2—N12.81 (16)C1—C2—C3—C4179.0 (3)
O1i—Co1—N2—N1177.19 (16)O2—C3—C4—C5177.3 (3)
N3—Co1—N2—N192.66 (17)C2—C3—C4—C51.2 (5)
N3i—Co1—N2—N187.34 (17)C3—C4—C5—C61.0 (6)
O1—Co1—N3—C15120.1 (2)C4—C5—C6—C70.1 (6)
O1i—Co1—N3—C1559.9 (2)C5—C6—C7—C21.0 (6)
N2i—Co1—N3—C1516.7 (2)C3—C2—C7—C60.8 (5)
N2—Co1—N3—C15163.3 (2)C1—C2—C7—C6177.9 (3)
O1—Co1—N3—C1161.3 (2)N1—N2—C8—C9179.7 (3)
O1i—Co1—N3—C11118.7 (2)Co1—N2—C8—C91.2 (5)
N2i—Co1—N3—C11164.6 (2)N1—N2—C8—C100.0 (4)
N2—Co1—N3—C1115.4 (2)Co1—N2—C8—C10179.1 (2)
N2i—Co1—O1—C1177.13 (19)C15—N3—C11—C120.1 (5)
N2—Co1—O1—C12.87 (19)Co1—N3—C11—C12178.6 (3)
N3—Co1—O1—C193.5 (2)N3—C11—C12—C130.5 (6)
N3i—Co1—O1—C186.5 (2)C11—C12—C13—C140.6 (6)
Co1—O1—C1—N12.7 (4)C12—C13—C14—C150.1 (5)
Co1—O1—C1—C2177.38 (18)C11—N3—C15—C140.7 (5)
N2—N1—C1—O10.0 (4)Co1—N3—C15—C14178.0 (3)
N2—N1—C1—C2180.0 (2)C13—C14—C15—N30.6 (5)
O1—C1—C2—C76.5 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.812.536 (3)147
C7—H7···O10.932.462.782 (4)100
C11—H11···N20.932.563.157 (4)123
C9—H9A···O1i0.962.233.159 (4)164
C15—H15···N2i0.932.543.137 (4)123
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C10H11N2O2)2(C5H5N)2]
Mr599.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.7751 (9), 10.0168 (15), 18.751 (2)
β (°) 96.621 (2)
V3)1450.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.34 × 0.19 × 0.16
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.813, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
7087, 2547, 1675
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.00
No. of reflections2547
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.028 (2)Co1—N22.179 (2)
Co1—O1i2.028 (2)Co1—N32.233 (2)
Co1—N2i2.179 (2)Co1—N3i2.233 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.812.536 (3)147.3
C7—H7···O10.932.462.782 (4)100.3
C11—H11···N20.932.563.157 (4)122.5
C9—H9A···O1i0.962.233.159 (4)163.7
C15—H15···N2i0.932.543.137 (4)122.6
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (20671048).

References

First citationArmstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145–1156.  CSD CrossRef Google Scholar
First citationKang, W.-J., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2007). Acta Cryst. E63, o3328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKraudelt, H., Ludwig, E., Schilde, U. & Uhlemann, E. (1996). Z. Naturforsch. Teil B, 51, 563–566.  CAS Google Scholar
First citationLiu, M.-L., Dou, J.-M., Wang, D.-Q. & Li, D.-C. (2005). Acta Cryst. E61, m1366–m1367.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatoga, D., Szklarzewicz, J., Stadnicka, K. & Shongwe, M. S. (2007). Inorg. Chem. pp. 9042–9044.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m457-m458
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds