organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o812-o813

4-(Di­methyl­amino)phenyl ethynyl telluride

aUnitat de Cristal·lografia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
*Correspondence e-mail: mariocapparelli@cantv.net

(Received 25 February 2009; accepted 13 March 2009; online 25 March 2009)

The title compound, C10H11NTe, is the first organyl ethynyl telluride, R—Te—C≡C—H, to be structurally characterized. In the L-shaped mol­ecule, the aryl moiety, viz. Me2NC6H4Te, is almost perpendicular to the Te—C≡C—H fragment. The Te—Csp2 bond [2.115 (3) Å] is significantly longer than the Te—Csp bond [2.041 (4) Å]. The Te—C≡C group is approximately linear [Te—C—C = 178.5 (4)° and C≡C = 1.161 (5) Å], while the coordination at the Te atom is angular [C—Te—C = 95.92 (14)°]. In the crystal structure, there are Csp—H⋯N hydrogen bonds which are perpendicular to the CNMe2 group; the N atom displays some degree of pyramidalization. Centrosymmetrically related pairs of mol­ecules are linked by Te⋯π(ar­yl) inter­actions, with Te⋯Cg = 3.683 (4) Å and Csp—Te⋯Cg = 159.1 (2)° (Cg is the centroid of the benzene ring). These inter­actions lead to the formation of zigzag ribbons which run along c and are approximately parallel to (110).

Related literature

For general background, see: Dabdoub et al. (1998[Dabdoub, M. J., Begnini, M. L. & Guerrero, P. G. Jr (1998). Tetrahedron, 54, 2371-2400.]); Gillespie & Hargittai (1991[Gillespie, R. J. & Hargittai, I. (1991). In The VSEPR Model of Molecular Geometry. Boston: Allyn & Bacon.]); Kauffmann & Ahlers (1983[Kauffmann, T. & Ahlers, H. (1983). Chem. Ber. 116, 1001-1008.]); Murai et al. (1994[Murai, T., Shimizu, A., Tatematsu, S., Ono, K., Kanda, T. & Kato, S. (1994). Heteroat. Chem. 5, 31-35.]); Petragnani (1994[Petragnani, N. (1994). In Tellurium in Organic Synthesis. London: Academic Press.]); Potapov & Trofimov (2005[Potapov, V. A. & Trofimov, B. A. (2005). Science of Synthesis. Houben-Weyl Methods of Molecular Transformations, Vol. 24, edited by A. de Meijere, pp. 957-1005. Stuttgart: Georg Thieme.]); Schulz Lang et al. (2006[Schulz Lang, E., Manzoni de Oliveira, G. & Casagrande, G. A. (2006). J. Organomet. Chem. 691, 59-64.]); Yoshimatsu (2005[Yoshimatsu, M. (2005). Science of Synthesis. Houben-Weyl Methods of Molecular Transformations, Vol. 24, edited by A. de Meijere, pp. 563-569. Stuttgart: Georg Thieme.]); Zukerman-Schpector & Haiduc (2001[Zukerman-Schpector, J. & Haiduc, I. (2001). Phosphorus Sulfur Silicon Relat. Elem. 171, 73-112.]). For related structures, see: Farran et al. (2002[Farran, J., Torres-Castellanos, L., Alvarez-Larena, A., Piniella, J. F. & Capparelli, M. V. (2002). J. Organomet. Chem. 654, 91-99.]). For details of the synthesis, see: Brandsma (1988[Brandsma, L. (1988). Preparative Acetylenic Chemistry, p. 27. Amsterdam: Elsevier.]); Petragnani et al. (1975[Petragnani, N., Torres, L. & Wynne, K. J. (1975). J. Organomet. Chem. 92, 185-189.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NTe

  • Mr = 272.80

  • Triclinic, [P \overline 1]

  • a = 7.8857 (7) Å

  • b = 8.3851 (8) Å

  • c = 9.3364 (9) Å

  • α = 65.788 (2)°

  • β = 66.922 (1)°

  • γ = 83.444 (2)°

  • V = 517.18 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 294 K

  • 0.36 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.403, Tmax = 0.754

  • 3574 measured reflections

  • 2401 independent reflections

  • 2080 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.04

  • 2401 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1i 0.93 2.48 3.379 (6) 163
Symmetry code: (i) x, y, z-1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Although organotellurium compounds have attracted considerable interest as reagents and intermediates in organic synthesis (Petragnani, 1994), only a limited number of compounds with mono- and ditelluroethyne cores, R—Te—CCH and R—Te—CC-Te—R', have been reported, in spite of the potential reactivity of the acetylene unit towards addition reactions. We recently reported the syntheses and crystal structures of several symmetrical (R = R') bis(aryltelluro)ethynes, Ar—Te—CC-Te—Ar (Farran et al., 2002). On the other hand, only five R—Te—CCH derivatives have been prepared so far, with R = Me, Et, iPr, n-Bu and Ph (Kauffmann & Ahlers, 1983; Dabdoub et al., 1998; Potapov & Trofimov, 2005; Yoshimatsu, 2005), and none has been structurally characterized (in addition, molecular orbital calculations for R = HCC were carried out by Murai et al., 1994). Here we describe the crystal structure of the title compound (R = p-Me2NC6H4), the first of an organyl ethynyl telluride to be reported.

The structure analysis showed that the crystal contains discrete L-shaped molecules of the title compound (Figure 1), in which the aryl moiety, Me2NC6H4Te, is almost perpendicular to the Te—CC-H fragment (cf. C—Te—C angle, Table 1), but bent ca 13° towards the C12—C13 side of the ring (cf. C—Te—C—C angles, Table 1), probably to optimize the C—H···N interaction (see below).

As expected, the Te—C(sp2) bond is significantly longer than the Te—C(sp) one. The Te—CC moiety is approximately linear, while the coordination at the Te atom is angular, as predicted by the valence-shell electron-pair repulsion (VSEPR) model for an AX2E2 molecule (Gillespie & Hargittai, 1991). The values of these geometric parameters (Table 1) are similar to the ranges observed in several bis(arytelluro)ethynes, Ar—Te—CC-Te—Ar (Farran et al., 2002), viz. Te—C(sp2), 2.103 (5)–2.142 (6) Å; Te—C(sp), 2.021 (6)–2.058 (6) Å; CC, 1.166 (12)–1.203 (11) Å and C—Te—C, 94.2 (3)–97.2 (2)°, which are substantially smaller than the tetrahedral value (109.5°) due to the repulsion of the lone pairs of electrons on the bonded ones.

In the crystal structure the molecules are linked by C(sp)—H···N hydrogen bonds (Table 2) which are perpendicular to the CNMe2 group. The N atom displays some degree of pyramidalization: it is 0.123 (5) Å out of the plane of the three C atoms, towards the H atom. There are also Te···π(aryl) interactions, similar to those described by Zukerman-Schpector & Haiduc (2001) or Schulz Lang et al. (2006) for Te(IV) compounds, in which centrosymmetrically related pairs of molecules are at Te···Cg 3.683 (4) Å and C(sp)—Te···Cg 159.1 (2)° (Cg = centroid of the phenyl ring at 1 - x, -y, 1 - z). These interactions lead to the formation of zigzag ribbons, made of pairs of chains, which run along c and are approximately parallel to (110) (Figure 2).

Related literature top

For related literature, see: Brandsma (1988); Dabdoub et al. (1998); Farran et al. (2002); Gillespie & Hargittai (1991); Kauffmann & Ahlers (1983); Murai et al. (1994); Petragnani (1994); Petragnani et al. (1975); Potapov & Trofimov (2005); Schulz Lang, Manzoni de Oliveira & Casagrande (2006); Yoshimatsu (2005); Zukerman-Schpector & Haiduc (2001). [Please divide references into specific categories, eg. synthesis, related structures etc]

Experimental top

Ethynyl magnesium bromide, HCCMgBr, was prepared according to published procedures (Brandsma, 1988). The corresponding diaryl ditelluride, (Me2NC6H4Te)2, was synthesized as reported elsewhere (Petragnani et al., 1975). A dark solution of the diaryl ditelluride (2.0 mmol, 0.94 g) in 40 ml of THF was treated dropwise with bromine (2.0 mmol, 0.32 g, 0.10 ml) in 10 ml of benzene, at 0°C, in N2 atmosphere, while efficient cooling was applied. The Grignard reagent was then added dropwise. Gradual disappearance of the dark color of the solution was observed until it finally became almost colorless when about 10% excess of the reagent was added. After stirring for 30 min at room temperature, the solution was diluted with 50 ml of low boiling point petroleum ether, treated with aqueous NH4Cl and washed with brine. The organic layer was dried over magnesium sulfate and the solvents were evaporated. The residue was purified by flash chromatography (silica gel/hexane). Yield 51%. Crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution. The specimen used for data collection was air-protected with a thin coat of Loctite epoxy adhesive.

Refinement top

Hydrogen atoms were placed in calculated positions using a riding atom model with fixed C—H distances [0.93 Å for C(sp) and C(sp2), 0.96 Å for C(sp3)] and Uiso = p Ueq(parent atom) [p = 1.2 for C(sp) and C(sp2), 1.5 for C(sp3)].

Structure description top

Although organotellurium compounds have attracted considerable interest as reagents and intermediates in organic synthesis (Petragnani, 1994), only a limited number of compounds with mono- and ditelluroethyne cores, R—Te—CCH and R—Te—CC-Te—R', have been reported, in spite of the potential reactivity of the acetylene unit towards addition reactions. We recently reported the syntheses and crystal structures of several symmetrical (R = R') bis(aryltelluro)ethynes, Ar—Te—CC-Te—Ar (Farran et al., 2002). On the other hand, only five R—Te—CCH derivatives have been prepared so far, with R = Me, Et, iPr, n-Bu and Ph (Kauffmann & Ahlers, 1983; Dabdoub et al., 1998; Potapov & Trofimov, 2005; Yoshimatsu, 2005), and none has been structurally characterized (in addition, molecular orbital calculations for R = HCC were carried out by Murai et al., 1994). Here we describe the crystal structure of the title compound (R = p-Me2NC6H4), the first of an organyl ethynyl telluride to be reported.

The structure analysis showed that the crystal contains discrete L-shaped molecules of the title compound (Figure 1), in which the aryl moiety, Me2NC6H4Te, is almost perpendicular to the Te—CC-H fragment (cf. C—Te—C angle, Table 1), but bent ca 13° towards the C12—C13 side of the ring (cf. C—Te—C—C angles, Table 1), probably to optimize the C—H···N interaction (see below).

As expected, the Te—C(sp2) bond is significantly longer than the Te—C(sp) one. The Te—CC moiety is approximately linear, while the coordination at the Te atom is angular, as predicted by the valence-shell electron-pair repulsion (VSEPR) model for an AX2E2 molecule (Gillespie & Hargittai, 1991). The values of these geometric parameters (Table 1) are similar to the ranges observed in several bis(arytelluro)ethynes, Ar—Te—CC-Te—Ar (Farran et al., 2002), viz. Te—C(sp2), 2.103 (5)–2.142 (6) Å; Te—C(sp), 2.021 (6)–2.058 (6) Å; CC, 1.166 (12)–1.203 (11) Å and C—Te—C, 94.2 (3)–97.2 (2)°, which are substantially smaller than the tetrahedral value (109.5°) due to the repulsion of the lone pairs of electrons on the bonded ones.

In the crystal structure the molecules are linked by C(sp)—H···N hydrogen bonds (Table 2) which are perpendicular to the CNMe2 group. The N atom displays some degree of pyramidalization: it is 0.123 (5) Å out of the plane of the three C atoms, towards the H atom. There are also Te···π(aryl) interactions, similar to those described by Zukerman-Schpector & Haiduc (2001) or Schulz Lang et al. (2006) for Te(IV) compounds, in which centrosymmetrically related pairs of molecules are at Te···Cg 3.683 (4) Å and C(sp)—Te···Cg 159.1 (2)° (Cg = centroid of the phenyl ring at 1 - x, -y, 1 - z). These interactions lead to the formation of zigzag ribbons, made of pairs of chains, which run along c and are approximately parallel to (110) (Figure 2).

For related literature, see: Brandsma (1988); Dabdoub et al. (1998); Farran et al. (2002); Gillespie & Hargittai (1991); Kauffmann & Ahlers (1983); Murai et al. (1994); Petragnani (1994); Petragnani et al. (1975); Potapov & Trofimov (2005); Schulz Lang, Manzoni de Oliveira & Casagrande (2006); Yoshimatsu (2005); Zukerman-Schpector & Haiduc (2001). [Please divide references into specific categories, eg. synthesis, related structures etc]

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atomic numbering. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. View of the zigzag ribbon generated by the hydrogen bonds and the Te···π(aryl) interactions (shown as dashed lines).
4-(Dimethylamino)phenyl ethynyl telluride top
Crystal data top
C10H11NTeZ = 2
Mr = 272.80F(000) = 260
Triclinic, P1Dx = 1.752 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8857 (7) ÅCell parameters from 1735 reflections
b = 8.3851 (8) Åθ = 2.7–25.6°
c = 9.3364 (9) ŵ = 2.82 mm1
α = 65.788 (2)°T = 294 K
β = 66.922 (1)°Plate, pale brown
γ = 83.444 (2)°0.36 × 0.30 × 0.10 mm
V = 517.18 (8) Å3
Data collection top
Brruker SMART APEX
diffractometer
2401 independent reflections
Radiation source: fine-focus sealed tube2080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 8.13 pixels mm-1θmax = 28.9°, θmin = 2.6°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1010
Tmin = 0.403, Tmax = 0.754l = 1012
3574 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.1129P]
where P = (Fo2 + 2Fc2)/3
2401 reflections(Δ/σ)max = 0.005
110 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C10H11NTeγ = 83.444 (2)°
Mr = 272.80V = 517.18 (8) Å3
Triclinic, P1Z = 2
a = 7.8857 (7) ÅMo Kα radiation
b = 8.3851 (8) ŵ = 2.82 mm1
c = 9.3364 (9) ÅT = 294 K
α = 65.788 (2)°0.36 × 0.30 × 0.10 mm
β = 66.922 (1)°
Data collection top
Brruker SMART APEX
diffractometer
2401 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2080 reflections with I > 2σ(I)
Tmin = 0.403, Tmax = 0.754Rint = 0.012
3574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.75 e Å3
2401 reflectionsΔρmin = 0.35 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.45985 (3)0.02042 (3)0.26991 (3)0.06634 (13)
C10.3522 (5)0.1483 (5)0.0886 (5)0.0612 (8)
C20.2942 (7)0.2203 (6)0.0170 (6)0.0747 (11)
H20.24780.27790.10160.090*
C110.3173 (5)0.1554 (5)0.4271 (4)0.0532 (7)
C120.3748 (5)0.3243 (5)0.3871 (5)0.0608 (9)
H120.47780.37920.28940.073*
C130.2819 (5)0.4118 (5)0.4899 (5)0.0595 (8)
H130.32190.52560.45920.071*
C140.1272 (5)0.3316 (4)0.6407 (4)0.0515 (7)
C150.0702 (5)0.1609 (5)0.6793 (5)0.0568 (8)
H150.03210.10420.77710.068*
C160.1641 (5)0.0766 (4)0.5739 (5)0.0566 (8)
H160.12360.03620.60220.068*
N10.0368 (5)0.4146 (5)0.7474 (4)0.0639 (8)
C170.0794 (7)0.5988 (5)0.6960 (6)0.0714 (11)
H1710.00330.63510.78520.107*
H1720.05610.66710.59490.107*
H1730.20710.61580.67390.107*
C180.1341 (7)0.3391 (7)0.8888 (6)0.0834 (13)
H1810.18340.41820.94390.125*
H1820.11210.23020.96810.125*
H1830.22090.31840.84850.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.0694 (2)0.0780 (2)0.06248 (18)0.02561 (14)0.03447 (14)0.03496 (14)
C10.061 (2)0.067 (2)0.060 (2)0.0095 (17)0.0267 (17)0.0276 (17)
C20.085 (3)0.081 (3)0.069 (2)0.023 (2)0.041 (2)0.033 (2)
C110.0526 (18)0.061 (2)0.0527 (18)0.0111 (15)0.0256 (15)0.0263 (15)
C120.0518 (18)0.067 (2)0.056 (2)0.0026 (16)0.0174 (16)0.0194 (17)
C130.060 (2)0.0532 (19)0.064 (2)0.0041 (16)0.0241 (17)0.0194 (16)
C140.0541 (18)0.0528 (18)0.0510 (17)0.0093 (14)0.0274 (15)0.0186 (14)
C150.0558 (19)0.0539 (19)0.0522 (18)0.0010 (15)0.0163 (15)0.0163 (15)
C160.064 (2)0.0460 (17)0.061 (2)0.0023 (15)0.0293 (17)0.0174 (15)
N10.070 (2)0.0569 (17)0.0628 (19)0.0078 (14)0.0228 (16)0.0254 (14)
C170.088 (3)0.062 (2)0.085 (3)0.019 (2)0.048 (2)0.039 (2)
C180.076 (3)0.095 (3)0.073 (3)0.013 (2)0.015 (2)0.043 (2)
Geometric parameters (Å, º) top
Te1—C12.041 (4)C15—C161.376 (5)
Te1—C112.115 (3)C15—H150.9300
C1—C21.161 (5)C16—H160.9300
C2—H20.9300N1—C181.440 (6)
C11—C161.384 (5)N1—C171.454 (6)
C11—C121.390 (5)C17—H1710.9600
C12—C131.378 (5)C17—H1720.9600
C12—H120.9300C17—H1730.9600
C13—C141.410 (5)C18—H1810.9600
C13—H130.9300C18—H1820.9600
C14—N11.372 (5)C18—H1830.9600
C14—C151.407 (5)
C1—Te1—C1195.92 (14)C15—C16—C11121.8 (3)
C2—C1—Te1178.5 (4)C15—C16—H16119.1
C1—C2—H2180.0C11—C16—H16119.1
C16—C11—C12118.1 (3)C14—N1—C18120.5 (3)
C16—C11—Te1120.6 (3)C14—N1—C17120.7 (4)
C12—C11—Te1121.3 (3)C18—N1—C17116.6 (4)
C13—C12—C11121.2 (3)N1—C17—H171109.5
C13—C12—H12119.4N1—C17—H172109.5
C11—C12—H12119.4H171—C17—H172109.5
C12—C13—C14121.0 (3)N1—C17—H173109.5
C12—C13—H13119.5H171—C17—H173109.5
C14—C13—H13119.5H172—C17—H173109.5
N1—C14—C15121.0 (3)N1—C18—H181109.5
N1—C14—C13121.8 (3)N1—C18—H182109.5
C15—C14—C13117.2 (3)H181—C18—H182109.5
C16—C15—C14120.8 (3)N1—C18—H183109.5
C16—C15—H15119.6H181—C18—H183109.5
C14—C15—H15119.6H182—C18—H183109.5
C1—Te1—C11—C16102.7 (3)C13—C14—C15—C160.7 (5)
C1—Te1—C11—C1277.8 (3)C14—C15—C16—C110.1 (6)
C16—C11—C12—C130.4 (6)C12—C11—C16—C150.3 (5)
Te1—C11—C12—C13179.9 (3)Te1—C11—C16—C15179.3 (3)
C11—C12—C13—C141.2 (6)C15—C14—N1—C188.9 (6)
C12—C13—C14—N1177.8 (4)C13—C14—N1—C18172.1 (4)
C12—C13—C14—C151.3 (5)C15—C14—N1—C17171.4 (4)
N1—C14—C15—C16178.4 (3)C13—C14—N1—C179.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i0.932.483.379 (6)163
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC10H11NTe
Mr272.80
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.8857 (7), 8.3851 (8), 9.3364 (9)
α, β, γ (°)65.788 (2), 66.922 (1), 83.444 (2)
V3)517.18 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.82
Crystal size (mm)0.36 × 0.30 × 0.10
Data collection
DiffractometerBrruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.403, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
3574, 2401, 2080
Rint0.012
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.04
No. of reflections2401
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.35

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Te1—C12.041 (4)C1—C21.161 (5)
Te1—C112.115 (3)
C1—Te1—C1195.92 (14)C2—C1—Te1178.5 (4)
C1—Te1—C11—C16102.7 (3)C1—Te1—C11—C1277.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i0.932.483.379 (6)162.9
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the European Union (project No. CI1*.0574.ES). JF thanks the Generalitat de Catalunya for an FI grant and MVC thanks the Ministerio de Educación y Cultura of Spain for a sabbatical grant (project No. SAB95-0281). The sample studied was kindly provided by Professor L. Torres-Castellanos. The X-ray measurements were carried out at the Servei de Difracció de Raigs X (UAB).

References

First citationBrandsma, L. (1988). Preparative Acetylenic Chemistry, p. 27. Amsterdam: Elsevier.  Google Scholar
First citationBruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDabdoub, M. J., Begnini, M. L. & Guerrero, P. G. Jr (1998). Tetrahedron, 54, 2371–2400.  Web of Science CrossRef CAS Google Scholar
First citationFarran, J., Torres-Castellanos, L., Alvarez-Larena, A., Piniella, J. F. & Capparelli, M. V. (2002). J. Organomet. Chem. 654, 91–99.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGillespie, R. J. & Hargittai, I. (1991). In The VSEPR Model of Molecular Geometry. Boston: Allyn & Bacon.  Google Scholar
First citationKauffmann, T. & Ahlers, H. (1983). Chem. Ber. 116, 1001–1008.  CrossRef CAS Web of Science Google Scholar
First citationMurai, T., Shimizu, A., Tatematsu, S., Ono, K., Kanda, T. & Kato, S. (1994). Heteroat. Chem. 5, 31–35.  CrossRef CAS Web of Science Google Scholar
First citationPetragnani, N. (1994). In Tellurium in Organic Synthesis. London: Academic Press.  Google Scholar
First citationPetragnani, N., Torres, L. & Wynne, K. J. (1975). J. Organomet. Chem. 92, 185–189.  CrossRef CAS Web of Science Google Scholar
First citationPotapov, V. A. & Trofimov, B. A. (2005). Science of Synthesis. Houben-Weyl Methods of Molecular Transformations, Vol. 24, edited by A. de Meijere, pp. 957–1005. Stuttgart: Georg Thieme.  Google Scholar
First citationSchulz Lang, E., Manzoni de Oliveira, G. & Casagrande, G. A. (2006). J. Organomet. Chem. 691, 59–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshimatsu, M. (2005). Science of Synthesis. Houben-Weyl Methods of Molecular Transformations, Vol. 24, edited by A. de Meijere, pp. 563–569. Stuttgart: Georg Thieme.  Google Scholar
First citationZukerman-Schpector, J. & Haiduc, I. (2001). Phosphorus Sulfur Silicon Relat. Elem. 171, 73–112.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o812-o813
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds