metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m406-m407

catena-Poly[[bis­­(N-ethyl­ethylene­di­amine-κ2N,N′)copper(II)]-μ-cyanido-κ2N:C-[dicyanido-κ2C-palladium(II)]-μ-cyanido-κ2C:N]

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp

(Received 9 March 2009; accepted 10 March 2009; online 19 March 2009)

The title compound, [CuPd(CN)4(C4H12N2)2]n, consists of one-dimensional chains. The Cu and Pd atoms are both located on centers of symmetry in an alternating array of [Cu(N-Eten)2]2+ (N-Eten = N-ethyl­ethylenediamine) and [Pd(CN)4]2− units. The Pd—C distances of 1.991 (3) and 1.992 (3) Å are inter­mediate values compared with the analogous NiII and PtII complexes [Akitsu & Einaga (2007[Akitsu, T. & Einaga, Y. (2007). Inorg. Chim. Acta, 360, 497-505.]). Inorg. Chim. Acta, 360, 497–505]. Due to Jahn–Teller effects, the axial Cu—N bond distance of 2.548 (2) Å is noticeably longer than the equatorial distances [Cu—NH2 = 2.007 (2) and Cu—NHC2H5 = 2.050 (2) Å]. There are interchain hybrogen bonds, with N(—H)⋯N = 3.099(4) Å.

Related literature

For photo-functional cyanide-bridged complexes, see: Escax et al. (2005[Escax, V., Champion, G., Arrio, M.-A., Zacchigna, M., Cartier dit Moulin, C. & Bleuzen, A. (2005). Angew. Chem. Int. Ed. 44, 4798-4801.]). For Jahn–Teller switching, see: Falvello (1997[Falvello, L. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4463-4475.]). For the photo-induced and thermally accessible structural change of [Cu(en)2](ClO4)2 (en = ethyl­enediamine), see: Akitsu & Einaga (2003[Akitsu, T. & Einaga, Y. (2003). Bull. Chem. Soc. Jpn, 77, 763-764.]). For various coordination polymers designed so far, see: Kuchár et al. (2003[Kuchár, J., Černák, J., Mayerova, Z., Kubacek, P. & Zak, Z. (2003). Solid State Phenom. 90-91, 323-328.], 2004[Kuchár, J., Černák, J. & Abboud, K. A. (2004). Acta Cryst. C60, m492-m494.]); Petříček et al. (2005[Petříček, V., Dušek, M. & Černák, J. (2005). Acta Cryst. B61, 280-286.]); Černák et al. (1998[Černák, J., Chomič, J., Gravereau, P., Orendacova, A., Orendac, M., Kovac, J., Feher, A. & Kappenstein, C. (1998). Inorg. Chim. Acta, 281, 134-140.]); Černák & Abboud (2002[Černák, J. & Abboud, K. A. (2002). Acta Cryst. C58, m167-m170.]); Manna et al. (2007[Manna, S. C., Ribas, J., Zangrando, E. & Chaudhuri, N. R. (2007). Polyhedron, 26, 3189-3198.]). Ni(en)2M(CN)4 affords slightly elongated or compressed octa­hedral coordination geometries for M = NiII or PdII, see: Černák et al. (1988[Černák, J., Chomič, J., Baloghová, D. & Dunaj-Jurčo, M. (1988). Acta Cryst. C44, 1902-1905.]). For related complexes, see: [Cu(en)2][Ni(CN)4] (Lokaj et al., 1991[Lokaj, J., Gyerová, K., Sopková, A., Sivý, J., Kettmann, V. & Vrábel, V. (1991). Acta Cryst. C47, 2447-2448.]); [Cu(en)2][Pd(CN)4] (Černák et al., 2001[Černák, J., Skorsepa, J., Abboud, K. A., Meisel, M. W., Orendac, M., Orendacova, A. & Feher, A. (2001). Inorg. Chim. Acta, 326, 3-8.]); [Cu(en)2][Pt(CN)4] (Akitsu & Einaga, 2006a[Akitsu, T. & Einaga, Y. (2006a). Acta Cryst. E62, m862-m864.]). For isotypic structures, see: [Cu(N-Eten)2][Ni(CN)4] and [Cu(N-Eten)2][Pt(CN)4] (Akitsu & Einaga, 2007[Akitsu, T. & Einaga, Y. (2007). Inorg. Chim. Acta, 360, 497-505.]). For a related mononuclear complex, see: Grenthe et al. (1979[Grenthe, I., Paoletti, P., Sandstorm, M. & Glikberg, S. (1979). Inorg. Chem. 18, 2687-2692.]). For the two-dimensional CuII–CoIII(CN)6 complex, see: Akitsu & Einaga (2006b[Akitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, m750-m752.]). For tetra­gonal Jahn–Teller distortion, see: Hathaway & Billing (1970[Hathaway, B. J. & Billing, D. E. (1970). Coord. Chem. Rev. 5, 143-207.]). For a mononuclear CuII complex without Jahn–Teller distortion, see: Zibaseresht & Hartshorn (2006[Zibaseresht, R. & Hartshorn, R. M. (2006). Acta Cryst. E62, i19-i22.]).

[Scheme 1]

Experimental

Crystal data
  • [CuPd(CN)4(C4H12N2)2]

  • Mr = 450.33

  • Triclinic, [P \overline 1]

  • a = 7.360 (4) Å

  • b = 7.567 (4) Å

  • c = 9.061 (4) Å

  • α = 69.091 (5)°

  • β = 72.490 (6)°

  • γ = 89.680 (6)°

  • V = 446.6 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Brruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.662, Tmax = 0.806

  • 2943 measured reflections

  • 1934 independent reflections

  • 1763 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.105

  • S = 0.85

  • 1934 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −1.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯N2i 0.90 2.26 3.099 (4) 156
Symmetry code: (i) x-1, y, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Associated with certain photo-functional cyanide-bridged complexes, Escax et al. (2005) have focused on the importance that structural strain of the lattice weaken ligand field strength of cyanide ligands. Additionally, so called Jahn-Teller switching (Falvello, 1997) may be a new mechanism for structural and electronic states switching even for cyanide-bridged coordination polymers containing a CuII moiety. We have reported photo-induced and thermally accessible structural change of [Cu(en)2](ClO4)2 (en = ethylenediamine; Akitsu & Einaga, 2003). Moreover, numerous coordination polymers, such as one-dimensional CuII—Ni(CN)4 (Kuchár et al., 2003), CdII—Ni(CN)4 (Petříček et al., 2005), CuII—Pd(CN)4 (Kuchár et al., 2004), CuII—Ag2(CN)3 (Černák et al., 1998), two-dimensional CuI/CuII—Ni(CN)4 (Černák et al., 2002), and cis and trans CuII—Pd(CN)4 complexes (Manna et al., 2007) have been designed so far. Among them, it has been reported that Ni(en)2M(CN)4 affords slightly elongated or compressed octahedral coordination geometries for M = NiII or PdII, respectively (Černák et al., 1988). In this context, we are interested in isostructral complexes by element-substitution and their structural differences, for example, [Cu(en)2][Ni(CN)4] (Lokaj et al., 1991), [Cu(en)2][Pd(CN)4] (Černák et al., 2001), and [Cu(en)2][Pt(CN)4] (Akitsu & Einaga, 2006a). Because we have already reported [Cu(N-Eten)2][Ni(CN)4] and [Cu(N-Eten)2][Pt(CN)4] complexes (Akitsu & Einaga, 2007), we report herein [Cu(N-Eten)2][Pd(CN)4](I)in order to investigate stereochemical effects by ethyl groups as the second series.

Compound (I) consists of one-dimensional chains (Fig. 1). Both Cu and Pd atoms are located on centers of symmetry in the alternative array of [Cu(N-Eten)2]2+ and [Pd(CN)4]2- moieties(Fig. 2). The Pd—C bond distances of (I) (Table 1) and the unit cell volume of (I) (446.6 (4) Å3) is middle value among the corresponding NiII (438.5 (5) Å3) and PtII (448.5 (3) Å3) complexes (Akitsu & Einaga, 2007). As for the [Cu(en)2][M(CN)4] series, similar features were also observed in NiII (333.9 (9) Å3) (Lokaj et al., 1991), PdII (347.63 (6) Å3) (Černák et al., 2001), and PtII (353.9 (4) Å3) (Akitsu & Einaga, 2006a), which are mainly attributed to gradual changes of ionic radii of NiII, PdII, and PtII ions.

The geometry of the [Cu(N-Eten)2]2+ unit in (I) is similar to the related mononuclear (Grenthe et al., 1979) and two-dimensional CuII—CoIII(CN)6 (Akitsu & Einaga, 2006b) complexes.

Due to Jahn–Teller effects the axial Cu—N bond distance of 2.548 (2) Å is sensibly longer than the equatorial ones, (NH2) 2.007 (2) and (NHC2H5) 2.050 (2) Å. However, it should be noted that ethyl groups gave characteristic strain to the crystal lattice and deviate from clearly gradual structural changes of the [Cu(N-Eten)2][M(CN)4] series. The axial Cu1—N1 bond length of 2.548 (2) Å in (I) is comparable to the analogous NiII (2.554 (2) Å) and PtII (2.550 (3) Å) complexes (Akitsu & Einaga, 2007). The degree of tetragonal Jahn–Teller distortion of [Cu(N-Eten)2]2+ moiety in (I) is T = 0.796 (mean T is the ratio of in-plane Cu—N bond lengths / axial Cu—N bond lengths; Hathaway & Billing, 1970). The T values are 0.796 and 0.797 for the analogous NiII and PtII complexes, respectively. On the other hand, as for [Cu(en)2][M(CN)4] series, the axial Cu—N bond lengths exhibited gradual changes for NiII(2.533 (4) Å, Lokaj et al., 1991), PdII (2.544 (2) Å, Černák et al., 2001), and PtII (2.562 (5) Å, Akitsu & Einaga, 2006a) complexes, respectively. Interestingly, absence of Jahn-Teller distortion is also reported for a certain mononuclear CuII complex (Zibaseresht & Hartshorn, 2006). In (I), there are N—H···N hydrogen bonds (Table 2), though some H···N distances are longer than the common values.

Related literature top

For photo-functional cyanide-bridged complexes, see: Escax et al. (2005). For Jahn–Teller switching, see: Falvello (1997). For the photo-induced and thermally accessible structural change of [Cu(en)2](ClO4)2 (en = ethylenediamine), see: Akitsu & Einaga (2003). For various coordination polymers designed so far, see: Kuchár et al. (2003, 2004); Petříček et al. (2005); Černák et al. (1998); Černák & Abboud (2002); Manna et al. (2007). Ni(en)2M(CN)4 affords slightly elongated or compressed octahedral coordination geometries for M = NiII or PdII, see: Černák et al. (1988). For isostructural complexes, see: [Cu(en)2][Ni(CN)4] (Lokaj et al., 1991); [Cu(en)2][Pd(CN)4] (Černák et al., 2001); [Cu(en)2][Pt(CN)4] (Akitsu & Einaga, 2006a); [Cu(N-Eten)2][Ni(CN)4] and [Cu(N-Eten)2][Pt(CN)4] (Akitsu & Einaga, 2007). For a related mononuclear complex, see: Grenthe et al. (1979) and for the two-dimensional CuII–CoIII(CN)6 complex, see: Akitsu & Einaga (2006b). For tetragonal Jahn–Teller distortion, see: Hathaway & Billing (1970). For a mononuclear CuII complex without Jahn–Teller distortion, see: Zibaseresht & Hartshorn (2006).

Experimental top

The compound (I) was obtained by slow diffusion of a methanol solution (36 ml) of [Cu(N-Eten)2](NO3)2 (36.0 mg, 0.100 mmol) onto an aqueous solution (5 ml) of K2[Pd(CN)4] (29.0 mg, 0.100 mmol) at 298 K. After several days, blue single crystals of (I) were obtained from the surface (Yield: 34.4 mg, 76.6%). Anal. Calcd for C12H24CuN8Pd: C 32.00, H 5.37, N 24.88%. Found: C 32.08, H 5.13, N 25.00%. IR (KBr, ν, cm-1): 470, 665, 721, 981, 1068, 1096, 1156, 1377, 1464, 1591, 2129 and 2132 (cyanide), 2853, 2923, 2953, 3162, 3253, 3273, 3310, 3582. Electronic spectrum (diffuse reflectance): 18100 cm-1 (F(Rd) 1.73) (d-d transition of distorted octahedral CuII ion). Weiss constant = -7.76 K (antiferromagnteic interaction). XPS Cu 2p1/2 960, Cu Cu 2p3/2 940 eV (CuII), Pd 3d3/2 357, and Pd 3d5/2 352 eV (PdII).

Refinement top

H atoms bonded to C and N atoms were placed in calculated positions, with C—H = 0.97 or 0.96 Å and N—H = 0.91 or 0.90 Å and with Uiso(H) = 1.2Ueq(C and N), and included in the final cycles of refinement using riding constraints.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x, -y, 2 - z, (ii) 1 - x, 1 - y, 1 - z, (iii) x - 1, y - 1, z + 1.
catena-Poly[[bis(N-ethylethylenediamine- κ2N,N')copper(II)]-µ-cyanido-κ2N:C- [dicyanido-κ2C-palladium(II)]-µ-cyanido-κ2C:N] top
Crystal data top
[CuPd(CN)4(C4H12N2)2]Z = 1
Mr = 450.33F(000) = 227
Triclinic, P1Dx = 1.674 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.360 (4) ÅCell parameters from 1805 reflections
b = 7.567 (4) Åθ = 2.5–27.5°
c = 9.061 (4) ŵ = 2.21 mm1
α = 69.091 (5)°T = 296 K
β = 72.490 (6)°Prismatic, blue violet
γ = 89.680 (6)°0.20 × 0.15 × 0.10 mm
V = 446.6 (4) Å3
Data collection top
Brruker SMART CCD area-detector
diffractometer
1934 independent reflections
Radiation source: fine-focus sealed tube1763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 89
Tmin = 0.662, Tmax = 0.806k = 49
2943 measured reflectionsl = 711
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.105H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1934 reflections(Δ/σ)max < 0.001
105 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
[CuPd(CN)4(C4H12N2)2]γ = 89.680 (6)°
Mr = 450.33V = 446.6 (4) Å3
Triclinic, P1Z = 1
a = 7.360 (4) ÅMo Kα radiation
b = 7.567 (4) ŵ = 2.21 mm1
c = 9.061 (4) ÅT = 296 K
α = 69.091 (5)°0.20 × 0.15 × 0.10 mm
β = 72.490 (6)°
Data collection top
Brruker SMART CCD area-detector
diffractometer
1934 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1763 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.806Rint = 0.027
2943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.85Δρmax = 1.24 e Å3
1934 reflectionsΔρmin = 1.28 e Å3
105 parameters
Special details top

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.50000.50000.02494 (14)
Cu10.00000.00001.00000.02702 (16)
N10.3378 (3)0.1070 (3)0.7927 (3)0.0451 (6)
N20.8047 (4)0.3301 (4)0.2789 (3)0.0489 (6)
N30.0787 (3)0.2641 (3)0.9459 (3)0.0325 (5)
H3C0.14840.27981.03980.039*
H3D0.02560.35100.89580.039*
N40.0720 (3)0.0022 (3)0.7978 (2)0.0302 (4)
H4C0.03090.02880.72990.036*
C10.4025 (3)0.2473 (4)0.6839 (3)0.0323 (5)
C20.6910 (4)0.3871 (3)0.3619 (3)0.0318 (5)
C30.1934 (4)0.2879 (4)0.8339 (3)0.0414 (6)
H3A0.20250.42190.77850.050*
H3B0.32200.22340.89690.050*
C40.0960 (4)0.2037 (4)0.7076 (3)0.0381 (6)
H4A0.17280.20890.63620.046*
H4B0.02820.27540.63840.046*
C50.2390 (4)0.1323 (4)0.8340 (3)0.0398 (6)
H5A0.35450.08760.88800.048*
H5B0.22710.25550.91180.048*
C60.2605 (5)0.1566 (5)0.6817 (5)0.0580 (9)
H6A0.37260.24340.71390.070*
H6B0.14930.20630.63010.070*
H6C0.27320.03550.60410.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02339 (19)0.0266 (2)0.01896 (19)0.00152 (13)0.00348 (13)0.00440 (13)
Cu10.0346 (3)0.0233 (3)0.0227 (3)0.0049 (2)0.0126 (2)0.0053 (2)
N10.0370 (12)0.0373 (13)0.0405 (13)0.0009 (10)0.0029 (10)0.0013 (10)
N20.0459 (14)0.0506 (14)0.0457 (14)0.0090 (12)0.0039 (12)0.0219 (12)
N30.0380 (12)0.0271 (10)0.0255 (10)0.0025 (9)0.0059 (9)0.0052 (8)
N40.0275 (10)0.0363 (11)0.0248 (10)0.0044 (8)0.0080 (8)0.0096 (8)
C10.0256 (11)0.0370 (13)0.0289 (12)0.0042 (10)0.0041 (9)0.0099 (10)
C20.0312 (12)0.0311 (12)0.0270 (12)0.0027 (10)0.0049 (10)0.0074 (9)
C30.0406 (15)0.0352 (13)0.0427 (16)0.0100 (12)0.0156 (12)0.0061 (11)
C40.0445 (15)0.0374 (13)0.0264 (12)0.0022 (12)0.0167 (11)0.0004 (10)
C50.0377 (14)0.0421 (15)0.0399 (14)0.0006 (12)0.0134 (12)0.0146 (12)
C60.066 (2)0.058 (2)0.074 (2)0.0132 (17)0.0404 (19)0.0370 (18)
Geometric parameters (Å, º) top
Pd1—C21.991 (3)N4—C51.479 (3)
Pd1—C2i1.991 (3)N4—C41.489 (3)
Pd1—C1i1.992 (3)N4—H4C0.9100
Pd1—C11.992 (3)C3—C41.500 (4)
Cu1—N12.548 (2)C3—H3A0.9700
Cu1—N3ii2.007 (2)C3—H3B0.9700
Cu1—N32.007 (2)C4—H4A0.9700
Cu1—N4ii2.050 (2)C4—H4B0.9700
Cu1—N42.050 (2)C5—C61.508 (4)
N1—C11.141 (3)C5—H5A0.9700
N2—C21.140 (3)C5—H5B0.9700
N3—C31.470 (3)C6—H6A0.9600
N3—H3C0.9000C6—H6B0.9600
N3—H3D0.9000C6—H6C0.9600
C2—Pd1—C2i180.000 (1)N2—C2—Pd1177.0 (2)
C2—Pd1—C1i87.83 (10)N3—C3—C4107.8 (2)
C2i—Pd1—C1i92.17 (10)N3—C3—H3A110.1
C2—Pd1—C192.17 (10)C4—C3—H3A110.1
C2i—Pd1—C187.83 (10)N3—C3—H3B110.1
C1i—Pd1—C1179.999 (1)C4—C3—H3B110.1
N3ii—Cu1—N3180.0H3A—C3—H3B108.5
N3ii—Cu1—N4ii85.55 (9)N4—C4—C3108.5 (2)
N3—Cu1—N4ii94.45 (9)N4—C4—H4A110.0
N3ii—Cu1—N494.45 (9)C3—C4—H4A110.0
N3—Cu1—N485.55 (9)N4—C4—H4B110.0
N4ii—Cu1—N4180.0C3—C4—H4B110.0
C3—N3—Cu1107.38 (16)H4A—C4—H4B108.4
C3—N3—H3C110.2N4—C5—C6113.9 (2)
Cu1—N3—H3C110.2N4—C5—H5A108.8
C3—N3—H3D110.2C6—C5—H5A108.8
Cu1—N3—H3D110.2N4—C5—H5B108.8
H3C—N3—H3D108.5C6—C5—H5B108.8
C5—N4—C4112.8 (2)H5A—C5—H5B107.7
C5—N4—Cu1116.00 (15)C5—C6—H6A109.5
C4—N4—Cu1105.94 (16)C5—C6—H6B109.5
C5—N4—H4C107.2H6A—C6—H6B109.5
C4—N4—H4C107.2C5—C6—H6C109.5
Cu1—N4—H4C107.2H6A—C6—H6C109.5
N1—C1—Pd1176.2 (2)H6B—C6—H6C109.5
N4ii—Cu1—N3—C3163.23 (16)Cu1—N3—C3—C442.9 (2)
N4—Cu1—N3—C316.78 (16)C5—N4—C4—C388.7 (3)
N3ii—Cu1—N4—C566.55 (19)Cu1—N4—C4—C339.2 (2)
N3—Cu1—N4—C5113.45 (19)N3—C3—C4—N455.7 (3)
N3ii—Cu1—N4—C4167.52 (16)C4—N4—C5—C670.2 (3)
N3—Cu1—N4—C412.47 (16)Cu1—N4—C5—C6167.4 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···N2iii0.902.263.099 (4)156
Symmetry code: (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[CuPd(CN)4(C4H12N2)2]
Mr450.33
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.360 (4), 7.567 (4), 9.061 (4)
α, β, γ (°)69.091 (5), 72.490 (6), 89.680 (6)
V3)446.6 (4)
Z1
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBrruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.662, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
2943, 1934, 1763
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.105, 0.85
No. of reflections1934
No. of parameters105
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 1.28

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···N2i0.902.2573.099 (4)156
Symmetry code: (i) x1, y, z+1.
 

Acknowledgements

The author thanks the Materials Design and Characterization Laboratory, Institute for Solid State Physics, University of Tokyo, for the SQUID facilities.

References

First citationAkitsu, T. & Einaga, Y. (2003). Bull. Chem. Soc. Jpn, 77, 763–764.  Web of Science CSD CrossRef Google Scholar
First citationAkitsu, T. & Einaga, Y. (2006a). Acta Cryst. E62, m862–m864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, m750–m752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkitsu, T. & Einaga, Y. (2007). Inorg. Chim. Acta, 360, 497–505.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationČernák, J. & Abboud, K. A. (2002). Acta Cryst. C58, m167–m170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationČernák, J., Chomič, J., Baloghová, D. & Dunaj-Jurčo, M. (1988). Acta Cryst. C44, 1902–1905.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationČernák, J., Chomič, J., Gravereau, P., Orendacova, A., Orendac, M., Kovac, J., Feher, A. & Kappenstein, C. (1998). Inorg. Chim. Acta, 281, 134–140.  Google Scholar
First citationČernák, J., Skorsepa, J., Abboud, K. A., Meisel, M. W., Orendac, M., Orendacova, A. & Feher, A. (2001). Inorg. Chim. Acta, 326, 3–8.  Google Scholar
First citationEscax, V., Champion, G., Arrio, M.-A., Zacchigna, M., Cartier dit Moulin, C. & Bleuzen, A. (2005). Angew. Chem. Int. Ed. 44, 4798–4801.  Web of Science CrossRef CAS Google Scholar
First citationFalvello, L. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4463–4475.  Web of Science CrossRef Google Scholar
First citationGrenthe, I., Paoletti, P., Sandstorm, M. & Glikberg, S. (1979). Inorg. Chem. 18, 2687–2692.  CSD CrossRef CAS Web of Science Google Scholar
First citationHathaway, B. J. & Billing, D. E. (1970). Coord. Chem. Rev. 5, 143–207.  CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKuchár, J., Černák, J. & Abboud, K. A. (2004). Acta Cryst. C60, m492–m494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuchár, J., Černák, J., Mayerova, Z., Kubacek, P. & Zak, Z. (2003). Solid State Phenom. 90–91, 323–328.  Google Scholar
First citationLokaj, J., Gyerová, K., Sopková, A., Sivý, J., Kettmann, V. & Vrábel, V. (1991). Acta Cryst. C47, 2447–2448.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationManna, S. C., Ribas, J., Zangrando, E. & Chaudhuri, N. R. (2007). Polyhedron, 26, 3189–3198.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetříček, V., Dušek, M. & Černák, J. (2005). Acta Cryst. B61, 280–286.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZibaseresht, R. & Hartshorn, R. M. (2006). Acta Cryst. E62, i19–i22.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m406-m407
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds