metal-organic compounds
catena-Poly[[bis(N-ethylethylenediamine-κ2N,N′)copper(II)]-μ-cyanido-κ2N:C-[dicyanido-κ2C-palladium(II)]-μ-cyanido-κ2C:N]
aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp
The title compound, [CuPd(CN)4(C4H12N2)2]n, consists of one-dimensional chains. The Cu and Pd atoms are both located on centers of symmetry in an alternating array of [Cu(N-Eten)2]2+ (N-Eten = N-ethylethylenediamine) and [Pd(CN)4]2− units. The Pd—C distances of 1.991 (3) and 1.992 (3) Å are intermediate values compared with the analogous NiII and PtII complexes [Akitsu & Einaga (2007). Inorg. Chim. Acta, 360, 497–505]. Due to Jahn–Teller effects, the axial Cu—N bond distance of 2.548 (2) Å is noticeably longer than the equatorial distances [Cu—NH2 = 2.007 (2) and Cu—NHC2H5 = 2.050 (2) Å]. There are interchain hybrogen bonds, with N(—H)⋯N = 3.099(4) Å.
Related literature
For photo-functional cyanide-bridged complexes, see: Escax et al. (2005). For Jahn–Teller switching, see: Falvello (1997). For the photo-induced and thermally accessible structural change of [Cu(en)2](ClO4)2 (en = ethylenediamine), see: Akitsu & Einaga (2003). For various coordination polymers designed so far, see: Kuchár et al. (2003, 2004); Petříček et al. (2005); Černák et al. (1998); Černák & Abboud (2002); Manna et al. (2007). Ni(en)2M(CN)4 affords slightly elongated or compressed octahedral coordination geometries for M = NiII or PdII, see: Černák et al. (1988). For related complexes, see: [Cu(en)2][Ni(CN)4] (Lokaj et al., 1991); [Cu(en)2][Pd(CN)4] (Černák et al., 2001); [Cu(en)2][Pt(CN)4] (Akitsu & Einaga, 2006a). For isotypic structures, see: [Cu(N-Eten)2][Ni(CN)4] and [Cu(N-Eten)2][Pt(CN)4] (Akitsu & Einaga, 2007). For a related mononuclear complex, see: Grenthe et al. (1979). For the two-dimensional CuII–CoIII(CN)6 complex, see: Akitsu & Einaga (2006b). For tetragonal Jahn–Teller distortion, see: Hathaway & Billing (1970). For a mononuclear CuII complex without Jahn–Teller distortion, see: Zibaseresht & Hartshorn (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680900885X/bg2245sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680900885X/bg2245Isup2.hkl
The compound (I) was obtained by slow diffusion of a methanol solution (36 ml) of [Cu(N-Eten)2](NO3)2 (36.0 mg, 0.100 mmol) onto an aqueous solution (5 ml) of K2[Pd(CN)4] (29.0 mg, 0.100 mmol) at 298 K. After several days, blue single crystals of (I) were obtained from the surface (Yield: 34.4 mg, 76.6%). Anal. Calcd for C12H24CuN8Pd: C 32.00, H 5.37, N 24.88%. Found: C 32.08, H 5.13, N 25.00%. IR (KBr, ν, cm-1): 470, 665, 721, 981, 1068, 1096, 1156, 1377, 1464, 1591, 2129 and 2132 (cyanide), 2853, 2923, 2953, 3162, 3253, 3273, 3310, 3582. Electronic spectrum (diffuse reflectance): 18100 cm-1 (F(Rd) 1.73) (d-d transition of distorted octahedral CuII ion). Weiss constant = -7.76 K (antiferromagnteic interaction). XPS Cu 2p1/2 960, Cu Cu 2p3/2 940 eV (CuII), Pd 3d3/2 357, and Pd 3d5/2 352 eV (PdII).
H atoms bonded to C and N atoms were placed in calculated positions, with C—H = 0.97 or 0.96 Å and N—H = 0.91 or 0.90 Å and with Uiso(H) = 1.2Ueq(C and N), and included in the final cycles of
using riding constraints.Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[CuPd(CN)4(C4H12N2)2] | Z = 1 |
Mr = 450.33 | F(000) = 227 |
Triclinic, P1 | Dx = 1.674 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.360 (4) Å | Cell parameters from 1805 reflections |
b = 7.567 (4) Å | θ = 2.5–27.5° |
c = 9.061 (4) Å | µ = 2.21 mm−1 |
α = 69.091 (5)° | T = 296 K |
β = 72.490 (6)° | Prismatic, blue violet |
γ = 89.680 (6)° | 0.20 × 0.15 × 0.10 mm |
V = 446.6 (4) Å3 |
Brruker SMART CCD area-detector diffractometer | 1934 independent reflections |
Radiation source: fine-focus sealed tube | 1763 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −8→9 |
Tmin = 0.662, Tmax = 0.806 | k = −4→9 |
2943 measured reflections | l = −7→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: mixed |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 0.85 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
1934 reflections | (Δ/σ)max < 0.001 |
105 parameters | Δρmax = 1.24 e Å−3 |
0 restraints | Δρmin = −1.28 e Å−3 |
[CuPd(CN)4(C4H12N2)2] | γ = 89.680 (6)° |
Mr = 450.33 | V = 446.6 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.360 (4) Å | Mo Kα radiation |
b = 7.567 (4) Å | µ = 2.21 mm−1 |
c = 9.061 (4) Å | T = 296 K |
α = 69.091 (5)° | 0.20 × 0.15 × 0.10 mm |
β = 72.490 (6)° |
Brruker SMART CCD area-detector diffractometer | 1934 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 1763 reflections with I > 2σ(I) |
Tmin = 0.662, Tmax = 0.806 | Rint = 0.027 |
2943 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 0.85 | Δρmax = 1.24 e Å−3 |
1934 reflections | Δρmin = −1.28 e Å−3 |
105 parameters |
Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.5000 | 0.5000 | 0.5000 | 0.02494 (14) | |
Cu1 | 0.0000 | 0.0000 | 1.0000 | 0.02702 (16) | |
N1 | 0.3378 (3) | 0.1070 (3) | 0.7927 (3) | 0.0451 (6) | |
N2 | 0.8047 (4) | 0.3301 (4) | 0.2789 (3) | 0.0489 (6) | |
N3 | −0.0787 (3) | 0.2641 (3) | 0.9459 (3) | 0.0325 (5) | |
H3C | −0.1484 | 0.2798 | 1.0398 | 0.039* | |
H3D | 0.0256 | 0.3510 | 0.8958 | 0.039* | |
N4 | −0.0720 (3) | 0.0022 (3) | 0.7978 (2) | 0.0302 (4) | |
H4C | 0.0309 | −0.0288 | 0.7299 | 0.036* | |
C1 | 0.4025 (3) | 0.2473 (4) | 0.6839 (3) | 0.0323 (5) | |
C2 | 0.6910 (4) | 0.3871 (3) | 0.3619 (3) | 0.0318 (5) | |
C3 | −0.1934 (4) | 0.2879 (4) | 0.8339 (3) | 0.0414 (6) | |
H3A | −0.2025 | 0.4219 | 0.7785 | 0.050* | |
H3B | −0.3220 | 0.2234 | 0.8969 | 0.050* | |
C4 | −0.0960 (4) | 0.2037 (4) | 0.7076 (3) | 0.0381 (6) | |
H4A | −0.1728 | 0.2089 | 0.6362 | 0.046* | |
H4B | 0.0282 | 0.2754 | 0.6384 | 0.046* | |
C5 | −0.2390 (4) | −0.1323 (4) | 0.8340 (3) | 0.0398 (6) | |
H5A | −0.3545 | −0.0876 | 0.8880 | 0.048* | |
H5B | −0.2271 | −0.2555 | 0.9118 | 0.048* | |
C6 | −0.2605 (5) | −0.1566 (5) | 0.6817 (5) | 0.0580 (9) | |
H6A | −0.3726 | −0.2434 | 0.7139 | 0.070* | |
H6B | −0.1493 | −0.2063 | 0.6301 | 0.070* | |
H6C | −0.2732 | −0.0355 | 0.6041 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.02339 (19) | 0.0266 (2) | 0.01896 (19) | 0.00152 (13) | −0.00348 (13) | −0.00440 (13) |
Cu1 | 0.0346 (3) | 0.0233 (3) | 0.0227 (3) | 0.0049 (2) | −0.0126 (2) | −0.0053 (2) |
N1 | 0.0370 (12) | 0.0373 (13) | 0.0405 (13) | −0.0009 (10) | −0.0029 (10) | 0.0013 (10) |
N2 | 0.0459 (14) | 0.0506 (14) | 0.0457 (14) | 0.0090 (12) | −0.0039 (12) | −0.0219 (12) |
N3 | 0.0380 (12) | 0.0271 (10) | 0.0255 (10) | 0.0025 (9) | −0.0059 (9) | −0.0052 (8) |
N4 | 0.0275 (10) | 0.0363 (11) | 0.0248 (10) | 0.0044 (8) | −0.0080 (8) | −0.0096 (8) |
C1 | 0.0256 (11) | 0.0370 (13) | 0.0289 (12) | 0.0042 (10) | −0.0041 (9) | −0.0099 (10) |
C2 | 0.0312 (12) | 0.0311 (12) | 0.0270 (12) | 0.0027 (10) | −0.0049 (10) | −0.0074 (9) |
C3 | 0.0406 (15) | 0.0352 (13) | 0.0427 (16) | 0.0100 (12) | −0.0156 (12) | −0.0061 (11) |
C4 | 0.0445 (15) | 0.0374 (13) | 0.0264 (12) | 0.0022 (12) | −0.0167 (11) | −0.0004 (10) |
C5 | 0.0377 (14) | 0.0421 (15) | 0.0399 (14) | 0.0006 (12) | −0.0134 (12) | −0.0146 (12) |
C6 | 0.066 (2) | 0.058 (2) | 0.074 (2) | 0.0132 (17) | −0.0404 (19) | −0.0370 (18) |
Pd1—C2 | 1.991 (3) | N4—C5 | 1.479 (3) |
Pd1—C2i | 1.991 (3) | N4—C4 | 1.489 (3) |
Pd1—C1i | 1.992 (3) | N4—H4C | 0.9100 |
Pd1—C1 | 1.992 (3) | C3—C4 | 1.500 (4) |
Cu1—N1 | 2.548 (2) | C3—H3A | 0.9700 |
Cu1—N3ii | 2.007 (2) | C3—H3B | 0.9700 |
Cu1—N3 | 2.007 (2) | C4—H4A | 0.9700 |
Cu1—N4ii | 2.050 (2) | C4—H4B | 0.9700 |
Cu1—N4 | 2.050 (2) | C5—C6 | 1.508 (4) |
N1—C1 | 1.141 (3) | C5—H5A | 0.9700 |
N2—C2 | 1.140 (3) | C5—H5B | 0.9700 |
N3—C3 | 1.470 (3) | C6—H6A | 0.9600 |
N3—H3C | 0.9000 | C6—H6B | 0.9600 |
N3—H3D | 0.9000 | C6—H6C | 0.9600 |
C2—Pd1—C2i | 180.000 (1) | N2—C2—Pd1 | 177.0 (2) |
C2—Pd1—C1i | 87.83 (10) | N3—C3—C4 | 107.8 (2) |
C2i—Pd1—C1i | 92.17 (10) | N3—C3—H3A | 110.1 |
C2—Pd1—C1 | 92.17 (10) | C4—C3—H3A | 110.1 |
C2i—Pd1—C1 | 87.83 (10) | N3—C3—H3B | 110.1 |
C1i—Pd1—C1 | 179.999 (1) | C4—C3—H3B | 110.1 |
N3ii—Cu1—N3 | 180.0 | H3A—C3—H3B | 108.5 |
N3ii—Cu1—N4ii | 85.55 (9) | N4—C4—C3 | 108.5 (2) |
N3—Cu1—N4ii | 94.45 (9) | N4—C4—H4A | 110.0 |
N3ii—Cu1—N4 | 94.45 (9) | C3—C4—H4A | 110.0 |
N3—Cu1—N4 | 85.55 (9) | N4—C4—H4B | 110.0 |
N4ii—Cu1—N4 | 180.0 | C3—C4—H4B | 110.0 |
C3—N3—Cu1 | 107.38 (16) | H4A—C4—H4B | 108.4 |
C3—N3—H3C | 110.2 | N4—C5—C6 | 113.9 (2) |
Cu1—N3—H3C | 110.2 | N4—C5—H5A | 108.8 |
C3—N3—H3D | 110.2 | C6—C5—H5A | 108.8 |
Cu1—N3—H3D | 110.2 | N4—C5—H5B | 108.8 |
H3C—N3—H3D | 108.5 | C6—C5—H5B | 108.8 |
C5—N4—C4 | 112.8 (2) | H5A—C5—H5B | 107.7 |
C5—N4—Cu1 | 116.00 (15) | C5—C6—H6A | 109.5 |
C4—N4—Cu1 | 105.94 (16) | C5—C6—H6B | 109.5 |
C5—N4—H4C | 107.2 | H6A—C6—H6B | 109.5 |
C4—N4—H4C | 107.2 | C5—C6—H6C | 109.5 |
Cu1—N4—H4C | 107.2 | H6A—C6—H6C | 109.5 |
N1—C1—Pd1 | 176.2 (2) | H6B—C6—H6C | 109.5 |
N4ii—Cu1—N3—C3 | −163.23 (16) | Cu1—N3—C3—C4 | −42.9 (2) |
N4—Cu1—N3—C3 | 16.78 (16) | C5—N4—C4—C3 | 88.7 (3) |
N3ii—Cu1—N4—C5 | 66.55 (19) | Cu1—N4—C4—C3 | −39.2 (2) |
N3—Cu1—N4—C5 | −113.45 (19) | N3—C3—C4—N4 | 55.7 (3) |
N3ii—Cu1—N4—C4 | −167.52 (16) | C4—N4—C5—C6 | 70.2 (3) |
N3—Cu1—N4—C4 | 12.47 (16) | Cu1—N4—C5—C6 | −167.4 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3C···N2iii | 0.90 | 2.26 | 3.099 (4) | 156 |
Symmetry code: (iii) x−1, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [CuPd(CN)4(C4H12N2)2] |
Mr | 450.33 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.360 (4), 7.567 (4), 9.061 (4) |
α, β, γ (°) | 69.091 (5), 72.490 (6), 89.680 (6) |
V (Å3) | 446.6 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.21 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Brruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.662, 0.806 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2943, 1934, 1763 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.105, 0.85 |
No. of reflections | 1934 |
No. of parameters | 105 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.24, −1.28 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3C···N2i | 0.90 | 2.257 | 3.099 (4) | 156 |
Symmetry code: (i) x−1, y, z+1. |
Acknowledgements
The author thanks the Materials Design and Characterization Laboratory, Institute for Solid State Physics, University of Tokyo, for the SQUID facilities.
References
Akitsu, T. & Einaga, Y. (2003). Bull. Chem. Soc. Jpn, 77, 763–764. Web of Science CSD CrossRef Google Scholar
Akitsu, T. & Einaga, Y. (2006a). Acta Cryst. E62, m862–m864. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, m750–m752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akitsu, T. & Einaga, Y. (2007). Inorg. Chim. Acta, 360, 497–505. Web of Science CSD CrossRef CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Černák, J. & Abboud, K. A. (2002). Acta Cryst. C58, m167–m170. Web of Science CSD CrossRef IUCr Journals Google Scholar
Černák, J., Chomič, J., Baloghová, D. & Dunaj-Jurčo, M. (1988). Acta Cryst. C44, 1902–1905. CSD CrossRef Web of Science IUCr Journals Google Scholar
Černák, J., Chomič, J., Gravereau, P., Orendacova, A., Orendac, M., Kovac, J., Feher, A. & Kappenstein, C. (1998). Inorg. Chim. Acta, 281, 134–140. Google Scholar
Černák, J., Skorsepa, J., Abboud, K. A., Meisel, M. W., Orendac, M., Orendacova, A. & Feher, A. (2001). Inorg. Chim. Acta, 326, 3–8. Google Scholar
Escax, V., Champion, G., Arrio, M.-A., Zacchigna, M., Cartier dit Moulin, C. & Bleuzen, A. (2005). Angew. Chem. Int. Ed. 44, 4798–4801. Web of Science CrossRef CAS Google Scholar
Falvello, L. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4463–4475. Web of Science CrossRef Google Scholar
Grenthe, I., Paoletti, P., Sandstorm, M. & Glikberg, S. (1979). Inorg. Chem. 18, 2687–2692. CSD CrossRef CAS Web of Science Google Scholar
Hathaway, B. J. & Billing, D. E. (1970). Coord. Chem. Rev. 5, 143–207. CrossRef CAS Web of Science Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kuchár, J., Černák, J. & Abboud, K. A. (2004). Acta Cryst. C60, m492–m494. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kuchár, J., Černák, J., Mayerova, Z., Kubacek, P. & Zak, Z. (2003). Solid State Phenom. 90–91, 323–328. Google Scholar
Lokaj, J., Gyerová, K., Sopková, A., Sivý, J., Kettmann, V. & Vrábel, V. (1991). Acta Cryst. C47, 2447–2448. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Manna, S. C., Ribas, J., Zangrando, E. & Chaudhuri, N. R. (2007). Polyhedron, 26, 3189–3198. Web of Science CSD CrossRef CAS Google Scholar
Petříček, V., Dušek, M. & Černák, J. (2005). Acta Cryst. B61, 280–286. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zibaseresht, R. & Hartshorn, R. M. (2006). Acta Cryst. E62, i19–i22. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Associated with certain photo-functional cyanide-bridged complexes, Escax et al. (2005) have focused on the importance that structural strain of the lattice weaken ligand field strength of cyanide ligands. Additionally, so called Jahn-Teller switching (Falvello, 1997) may be a new mechanism for structural and electronic states switching even for cyanide-bridged coordination polymers containing a CuII moiety. We have reported photo-induced and thermally accessible structural change of [Cu(en)2](ClO4)2 (en = ethylenediamine; Akitsu & Einaga, 2003). Moreover, numerous coordination polymers, such as one-dimensional CuII—Ni(CN)4 (Kuchár et al., 2003), CdII—Ni(CN)4 (Petříček et al., 2005), CuII—Pd(CN)4 (Kuchár et al., 2004), CuII—Ag2(CN)3 (Černák et al., 1998), two-dimensional CuI/CuII—Ni(CN)4 (Černák et al., 2002), and cis and trans CuII—Pd(CN)4 complexes (Manna et al., 2007) have been designed so far. Among them, it has been reported that Ni(en)2M(CN)4 affords slightly elongated or compressed octahedral coordination geometries for M = NiII or PdII, respectively (Černák et al., 1988). In this context, we are interested in isostructral complexes by element-substitution and their structural differences, for example, [Cu(en)2][Ni(CN)4] (Lokaj et al., 1991), [Cu(en)2][Pd(CN)4] (Černák et al., 2001), and [Cu(en)2][Pt(CN)4] (Akitsu & Einaga, 2006a). Because we have already reported [Cu(N-Eten)2][Ni(CN)4] and [Cu(N-Eten)2][Pt(CN)4] complexes (Akitsu & Einaga, 2007), we report herein [Cu(N-Eten)2][Pd(CN)4](I)in order to investigate stereochemical effects by ethyl groups as the second series.
Compound (I) consists of one-dimensional chains (Fig. 1). Both Cu and Pd atoms are located on centers of symmetry in the alternative array of [Cu(N-Eten)2]2+ and [Pd(CN)4]2- moieties(Fig. 2). The Pd—C bond distances of (I) (Table 1) and the unit cell volume of (I) (446.6 (4) Å3) is middle value among the corresponding NiII (438.5 (5) Å3) and PtII (448.5 (3) Å3) complexes (Akitsu & Einaga, 2007). As for the [Cu(en)2][M(CN)4] series, similar features were also observed in NiII (333.9 (9) Å3) (Lokaj et al., 1991), PdII (347.63 (6) Å3) (Černák et al., 2001), and PtII (353.9 (4) Å3) (Akitsu & Einaga, 2006a), which are mainly attributed to gradual changes of ionic radii of NiII, PdII, and PtII ions.
The geometry of the [Cu(N-Eten)2]2+ unit in (I) is similar to the related mononuclear (Grenthe et al., 1979) and two-dimensional CuII—CoIII(CN)6 (Akitsu & Einaga, 2006b) complexes.
Due to Jahn–Teller effects the axial Cu—N bond distance of 2.548 (2) Å is sensibly longer than the equatorial ones, (NH2) 2.007 (2) and (NHC2H5) 2.050 (2) Å. However, it should be noted that ethyl groups gave characteristic strain to the crystal lattice and deviate from clearly gradual structural changes of the [Cu(N-Eten)2][M(CN)4] series. The axial Cu1—N1 bond length of 2.548 (2) Å in (I) is comparable to the analogous NiII (2.554 (2) Å) and PtII (2.550 (3) Å) complexes (Akitsu & Einaga, 2007). The degree of tetragonal Jahn–Teller distortion of [Cu(N-Eten)2]2+ moiety in (I) is T = 0.796 (mean T is the ratio of in-plane Cu—N bond lengths / axial Cu—N bond lengths; Hathaway & Billing, 1970). The T values are 0.796 and 0.797 for the analogous NiII and PtII complexes, respectively. On the other hand, as for [Cu(en)2][M(CN)4] series, the axial Cu—N bond lengths exhibited gradual changes for NiII(2.533 (4) Å, Lokaj et al., 1991), PdII (2.544 (2) Å, Černák et al., 2001), and PtII (2.562 (5) Å, Akitsu & Einaga, 2006a) complexes, respectively. Interestingly, absence of Jahn-Teller distortion is also reported for a certain mononuclear CuII complex (Zibaseresht & Hartshorn, 2006). In (I), there are N—H···N hydrogen bonds (Table 2), though some H···N distances are longer than the common values.