organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o865-o866

1-[(6-Chloro-3-pyrid­yl)meth­yl]-N-(4-eth­oxy­phen­yl)-3-phenyl-1H-pyrazole-5-carboxamide

aSubmarine College of Navy, Qingdao 266071, People's Republic of China, bCollege of Advanced Professional Technology, Qingdao University, Qingdao 266061, People's Republic of China, cSchool of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China, and dSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: sduzhao@hotmail.com

(Received 13 March 2009; accepted 20 March 2009; online 25 March 2009)

In the title compound, C24H21ClN4O2, the pyrazole ring makes dihedral angles of 7.70 (11), 89.17 (11) and 40.68 (11)° with the phenyl, pyridine and ethoxy­phenyl rings, respectively. There are some intra­molecular C—H⋯O and C—H⋯π bonds giving rigidity to the mol­ecule, while weak inter­molecular N—H⋯N and C—H⋯π hydrogen bonds link the mol­ecules into a two-dimensional structure.

Related literature

For the biological properties of pyrazole derivatives, see: Jia et al. (2004[Jia, Z. J., Wu, Y., Huang, W., Zhang, P., Song, Y., Woolfrey, J., Sinha, U., Arfsten, A. E., Edwards, S. T., Hutchaleelaha, A., Hollennbach, S. J., Lambing, J. L., Scarborough, R. M. & Zhu, B. Y. (2004). Bioorg. Med. Chem. Lett. 14, 1229-1234.]); Wei et al. (2006[Wei, F., Zhao, B.-X., Huang, B., Zhang, L., Sun, C.-H., Dong, W.-L., Shin, D.-S. & Miao, J.-Y. (2006). Bioorg. Med. Chem. Lett. 16, 6342-6347.]); Xia et al. (2007[Xia, Y., Dong, Z.-W., Zhao, B.-X., Ge, X., Meng, N., Shin, D.-S. & Miao, J.-Y. (2007). Bioorg. Med. Chem. 15, 6893-6899.]). For the synthesis and bioactivity evaluation of pyrazole derivatives, see: Zhang et al. (2008[Zhang, J.-H., Fan, C.-D., Zhao, B.-X., Shin, D.-S., Dong, W.-L., Xie, Y.-S. & Miao, J.-Y. (2008). Bioorg. Med. Chem. 16, 10165-10171.]); Zhao et al. (2008[Zhao, B.-X., Zhang, L., Zhu, X.-S., Wan, M.-S., Zhao, J., Zhang, Y., Zhang, S.-L. & Miao, J.-Y. (2008). Bioorg. Med. Chem. 16, 5171-5180.]); Tang et al. (2007[Tang, Z., Tang, Z., Ding, X.-L., Dong, W.-L. & Zhao, B.-X. (2007). Acta Cryst. E63, o3348.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21ClN4O2

  • Mr = 432.90

  • Monoclinic, P 21 /n

  • a = 10.0697 (12) Å

  • b = 5.1399 (6) Å

  • c = 40.990 (5) Å

  • β = 96.446 (2)°

  • V = 2108.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.96, Tmax = 0.98

  • 10472 measured reflections

  • 3699 independent reflections

  • 2571 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.03

  • 3699 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1 0.97 2.35 2.876 (3) 114
C18—H18⋯O1 0.93 2.31 2.861 (3) 118
C12—H12⋯Cg1 0.93 2.74 3.354 (2) 125
N4—H4⋯N3i 0.86 2.59 3.406 (2) 159
C23—H23ACg2ii 0.97 2.71 3.571 (3) 149
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z. Cg1 and Cg2 are the centroids of the N1/N2/C1–C3 and C17–C22 rings, respectively.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole framework plays an essential role in biologically active compounds. Many pyrazole derivatives are known to exhibit a wide range of biological properties such as anticoagulant (Jia et al., 2004), and antitumour (Wei et al., 2006; Xia et al. (2007)) activities. As part of our continuing project of the study on the synthesis and evaluation of pyrazole derivatives (Tang et al., 2007 and Zhao et al.,2008; Zhang et al., 2008), we report here the synthesis and crystal structure of the title compound C24H21ClN4O2. The pyrazole ring makes dihedral angles of 7.70 (11)°, 89.17 (11)° and 40.68 (11)° with the phenyl, pyridine and ethoxyphenyl rings, respectively. There are some intramolecular C—H···O and C—H···π bonds giving rigidity to the molecule (first three entries in Table 1), while weak intermolecular N—H···N and C—H···π hydrogen bonds (last two entries in Table 1) link the molecules into a 2D structure.

Related literature top

For the biological properties of pyrazole derivatives, see: Jia et al. (2004); Wei et al. (2006); Xia et al. (2007). For the synthesis end evaluation of pyrazole derivatives, see: Zhang et al. (2008); Zhao et al. (2008); Tang et al. (2007).

Experimental top

1-(6-Chloropyridin-3-ylmethyl)-3-phenyl-1H-pyrazole-5-carboxylic acid (0.31 g, 1 mmol) and thionyl chloride (0.60 g, 5 mmol) were added to a flask with a condenser and heated to reflux for 4 h. After completion of the reaction (by TLC monitoring), the excess thionyl chloride was evaporated under reduced pressure. To the solution of the crude product, 1-((6-chloropyridin-3-yl)methyl)-3-phenyl-1H-pyrazole-5-carbonyl chloride (0.332 g, 1 mmol), and triethylamine (0.15 g, 1 mmol) in dichloromethane (20 ml), the solution of 4-ethoxyaniline (0.14 g, 1 mmol) in dichloromethane (20 ml) was added and the mixture was stirred for 20 h at room temperature. Then the mixture was washed with water (20 ml x 3). After dried over anhydrous MgSO4 the mixture was filtered and the filtrate obtained was concentrated under reduced pressure to obtain the corresponding crude product. The product was purified by column chromatography on silica gel using mixture of dichloromethane and ethyl acetate (10/1) as eluent (yield 43%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid dissolved in ethyl acetate/hexane at room temperature for 10 days.

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86Å and with Uiso(H)=1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing atom and centroid labels. Displacement ellipsoids drawn at the 50% probability level for non-H atoms.
1-[(6-Chloro-3-pyridyl)methyl]-N-(4-ethoxyphenyl)-3-phenyl- 1H-pyrazole-5-carboxamide top
Crystal data top
C24H21ClN4O2F(000) = 904
Mr = 432.90Dx = 1.364 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2064 reflections
a = 10.0697 (12) Åθ = 2.7–22.1°
b = 5.1399 (6) ŵ = 0.21 mm1
c = 40.990 (5) ÅT = 298 K
β = 96.446 (2)°Block, colourless
V = 2108.1 (4) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3699 independent reflections
Radiation source: fine-focus sealed tube2571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 911
Tmin = 0.96, Tmax = 0.98k = 66
10472 measured reflectionsl = 4648
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.3478P]
where P = (Fo2 + 2Fc2)/3
3699 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C24H21ClN4O2V = 2108.1 (4) Å3
Mr = 432.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0697 (12) ŵ = 0.21 mm1
b = 5.1399 (6) ÅT = 298 K
c = 40.990 (5) Å0.15 × 0.12 × 0.10 mm
β = 96.446 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3699 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2571 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.98Rint = 0.031
10472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
3699 reflectionsΔρmin = 0.23 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.71782 (6)0.22109 (13)0.164051 (17)0.0697 (2)
O10.10720 (14)0.0159 (3)0.08714 (4)0.0596 (4)
O20.32793 (14)0.7133 (3)0.00202 (4)0.0592 (4)
N10.15163 (15)0.5760 (3)0.16155 (4)0.0401 (4)
N20.14531 (15)0.4370 (3)0.13344 (4)0.0382 (4)
N30.60325 (16)0.1539 (4)0.12864 (4)0.0478 (5)
N40.10977 (15)0.0112 (3)0.09696 (4)0.0453 (4)
H40.16700.04860.10910.054*
C10.04487 (18)0.5012 (4)0.17605 (5)0.0384 (5)
C20.02871 (19)0.3133 (4)0.15696 (5)0.0420 (5)
H20.10700.23220.16160.050*
C30.03779 (18)0.2730 (4)0.13003 (5)0.0381 (5)
C40.02032 (19)0.6110 (4)0.20807 (5)0.0395 (5)
C50.0794 (2)0.5097 (4)0.22505 (5)0.0509 (6)
H50.13040.37040.21620.061*
C60.1040 (2)0.6129 (5)0.25494 (6)0.0621 (7)
H60.17180.54360.26590.075*
C70.0295 (3)0.8158 (5)0.26846 (6)0.0660 (7)
H70.04620.88460.28860.079*
C80.0708 (3)0.9179 (5)0.25205 (6)0.0695 (7)
H80.12241.05510.26120.083*
C90.0951 (2)0.8179 (4)0.22210 (5)0.0545 (6)
H90.16240.88970.21110.065*
C100.25901 (18)0.4539 (4)0.11441 (5)0.0409 (5)
H10A0.28980.63270.11430.049*
H10B0.23090.40330.09190.049*
C110.37272 (18)0.2810 (4)0.12835 (4)0.0354 (5)
C120.3565 (2)0.0878 (4)0.15098 (5)0.0452 (5)
H120.27380.06430.15860.054*
C130.4616 (2)0.0693 (4)0.16222 (5)0.0499 (6)
H130.45180.20010.17740.060*
C140.58170 (19)0.0273 (4)0.15031 (5)0.0435 (5)
C150.4985 (2)0.3043 (4)0.11817 (5)0.0457 (5)
H150.51120.43360.10300.055*
C160.01583 (19)0.0825 (4)0.10273 (5)0.0413 (5)
C170.15751 (19)0.1981 (4)0.07291 (5)0.0417 (5)
C180.0756 (2)0.3663 (4)0.05794 (5)0.0464 (5)
H180.01640.36120.06370.056*
C190.1289 (2)0.5423 (4)0.03440 (5)0.0486 (5)
H190.07250.65320.02450.058*
C200.2651 (2)0.5540 (4)0.02558 (5)0.0462 (5)
C210.3474 (2)0.3877 (5)0.04087 (5)0.0540 (6)
H210.43950.39500.03530.065*
C220.2944 (2)0.2126 (4)0.06405 (5)0.0521 (6)
H220.35110.10210.07400.062*
C230.2494 (2)0.8951 (5)0.01383 (6)0.0588 (6)
H23A0.20201.01040.00220.071*
H23B0.18440.80440.02540.071*
C240.3440 (3)1.0481 (6)0.03759 (6)0.0780 (8)
H24A0.41541.11560.02640.117*
H24B0.29691.18960.04630.117*
H24C0.38020.93670.05520.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0448 (3)0.0661 (4)0.0967 (5)0.0083 (3)0.0017 (3)0.0136 (4)
O10.0435 (9)0.0673 (11)0.0702 (11)0.0103 (8)0.0162 (8)0.0280 (9)
O20.0513 (9)0.0624 (10)0.0624 (10)0.0076 (8)0.0004 (7)0.0262 (8)
N10.0388 (9)0.0392 (10)0.0424 (10)0.0022 (8)0.0045 (7)0.0058 (8)
N20.0367 (9)0.0396 (10)0.0387 (9)0.0042 (8)0.0063 (7)0.0059 (8)
N30.0407 (10)0.0492 (11)0.0549 (11)0.0024 (9)0.0119 (8)0.0025 (9)
N40.0378 (9)0.0557 (11)0.0430 (10)0.0096 (8)0.0068 (7)0.0140 (9)
C10.0320 (10)0.0398 (12)0.0431 (12)0.0012 (9)0.0028 (9)0.0005 (10)
C20.0333 (11)0.0481 (13)0.0446 (12)0.0057 (10)0.0043 (9)0.0059 (10)
C30.0320 (10)0.0415 (12)0.0403 (11)0.0030 (9)0.0013 (9)0.0033 (9)
C40.0369 (11)0.0400 (12)0.0408 (11)0.0063 (9)0.0011 (9)0.0026 (9)
C50.0520 (13)0.0550 (14)0.0461 (13)0.0029 (11)0.0076 (10)0.0045 (11)
C60.0677 (16)0.0717 (17)0.0502 (14)0.0057 (14)0.0210 (12)0.0006 (13)
C70.0872 (19)0.0653 (17)0.0466 (14)0.0106 (15)0.0123 (13)0.0111 (13)
C80.0876 (19)0.0611 (17)0.0595 (16)0.0088 (15)0.0065 (14)0.0214 (13)
C90.0589 (14)0.0545 (15)0.0510 (14)0.0081 (12)0.0104 (11)0.0106 (12)
C100.0406 (11)0.0427 (12)0.0406 (12)0.0054 (10)0.0101 (9)0.0014 (10)
C110.0357 (11)0.0351 (11)0.0359 (11)0.0049 (9)0.0057 (8)0.0059 (9)
C120.0369 (12)0.0518 (14)0.0479 (12)0.0053 (10)0.0095 (9)0.0053 (11)
C130.0469 (13)0.0509 (14)0.0517 (13)0.0037 (11)0.0048 (10)0.0130 (11)
C140.0351 (11)0.0435 (13)0.0508 (13)0.0016 (9)0.0006 (9)0.0057 (11)
C150.0461 (13)0.0454 (13)0.0471 (13)0.0039 (10)0.0129 (10)0.0043 (10)
C160.0391 (12)0.0418 (12)0.0427 (12)0.0047 (10)0.0032 (9)0.0041 (10)
C170.0436 (12)0.0447 (13)0.0366 (11)0.0090 (10)0.0032 (9)0.0046 (10)
C180.0388 (12)0.0456 (13)0.0528 (13)0.0020 (10)0.0040 (10)0.0053 (11)
C190.0488 (13)0.0446 (13)0.0520 (13)0.0016 (11)0.0034 (10)0.0096 (11)
C200.0485 (13)0.0457 (13)0.0437 (12)0.0117 (11)0.0019 (10)0.0092 (10)
C210.0366 (12)0.0693 (16)0.0562 (14)0.0104 (11)0.0048 (10)0.0195 (12)
C220.0412 (12)0.0626 (15)0.0536 (14)0.0070 (11)0.0105 (10)0.0195 (12)
C230.0591 (14)0.0627 (16)0.0562 (14)0.0098 (13)0.0135 (11)0.0187 (12)
C240.0737 (17)0.092 (2)0.0695 (17)0.0161 (16)0.0130 (13)0.0413 (16)
Geometric parameters (Å, º) top
Cl1—C141.736 (2)C9—H90.9300
O1—C161.226 (2)C10—C111.510 (3)
O2—C201.366 (2)C10—H10A0.9700
O2—C231.427 (2)C10—H10B0.9700
N1—C11.342 (2)C11—C121.381 (3)
N1—N21.351 (2)C11—C151.382 (3)
N2—C31.367 (2)C12—C131.369 (3)
N2—C101.458 (2)C12—H120.9300
N3—C141.322 (3)C13—C141.371 (3)
N3—C151.339 (3)C13—H130.9300
N4—C161.349 (2)C15—H150.9300
N4—C171.421 (2)C17—C181.385 (3)
N4—H40.8600C17—C221.388 (3)
C1—C21.401 (3)C18—C191.386 (3)
C1—C41.475 (3)C18—H180.9300
C2—C31.370 (3)C19—C201.379 (3)
C2—H20.9300C19—H190.9300
C3—C161.485 (3)C20—C211.388 (3)
C4—C51.386 (3)C21—C221.372 (3)
C4—C91.390 (3)C21—H210.9300
C5—C61.383 (3)C22—H220.9300
C5—H50.9300C23—C241.506 (3)
C6—C71.365 (3)C23—H23A0.9700
C6—H60.9300C23—H23B0.9700
C7—C81.379 (3)C24—H24A0.9600
C7—H70.9300C24—H24B0.9600
C8—C91.378 (3)C24—H24C0.9600
C8—H80.9300
C20—O2—C23118.55 (17)C13—C12—C11120.33 (18)
C1—N1—N2105.24 (15)C13—C12—H12119.8
N1—N2—C3111.98 (14)C11—C12—H12119.8
N1—N2—C10117.37 (15)C12—C13—C14117.8 (2)
C3—N2—C10129.97 (16)C12—C13—H13121.1
C14—N3—C15116.06 (17)C14—C13—H13121.1
C16—N4—C17126.88 (17)N3—C14—C13124.61 (19)
C16—N4—H4116.6N3—C14—Cl1116.05 (15)
C17—N4—H4116.6C13—C14—Cl1119.34 (17)
N1—C1—C2110.48 (17)N3—C15—C11124.67 (19)
N1—C1—C4120.47 (17)N3—C15—H15117.7
C2—C1—C4129.03 (17)C11—C15—H15117.7
C3—C2—C1106.18 (17)O1—C16—N4123.54 (18)
C3—C2—H2126.9O1—C16—C3121.32 (17)
C1—C2—H2126.9N4—C16—C3115.13 (17)
N2—C3—C2106.11 (16)C18—C17—C22118.31 (19)
N2—C3—C16122.22 (16)C18—C17—N4123.88 (18)
C2—C3—C16131.48 (17)C22—C17—N4117.81 (18)
C5—C4—C9117.98 (19)C17—C18—C19120.80 (19)
C5—C4—C1120.42 (18)C17—C18—H18119.6
C9—C4—C1121.61 (18)C19—C18—H18119.6
C6—C5—C4120.8 (2)C20—C19—C18120.46 (19)
C6—C5—H5119.6C20—C19—H19119.8
C4—C5—H5119.6C18—C19—H19119.8
C7—C6—C5120.5 (2)O2—C20—C19125.40 (19)
C7—C6—H6119.7O2—C20—C21115.80 (18)
C5—C6—H6119.7C19—C20—C21118.78 (19)
C6—C7—C8119.5 (2)C22—C21—C20120.72 (19)
C6—C7—H7120.3C22—C21—H21119.6
C8—C7—H7120.3C20—C21—H21119.6
C9—C8—C7120.4 (2)C21—C22—C17120.9 (2)
C9—C8—H8119.8C21—C22—H22119.5
C7—C8—H8119.8C17—C22—H22119.5
C8—C9—C4120.8 (2)O2—C23—C24107.08 (19)
C8—C9—H9119.6O2—C23—H23A110.3
C4—C9—H9119.6C24—C23—H23A110.3
N2—C10—C11111.72 (16)O2—C23—H23B110.3
N2—C10—H10A109.3C24—C23—H23B110.3
C11—C10—H10A109.3H23A—C23—H23B108.6
N2—C10—H10B109.3C23—C24—H24A109.5
C11—C10—H10B109.3C23—C24—H24B109.5
H10A—C10—H10B107.9H24A—C24—H24B109.5
C12—C11—C15116.50 (18)C23—C24—H24C109.5
C12—C11—C10122.38 (16)H24A—C24—H24C109.5
C15—C11—C10121.09 (18)H24B—C24—H24C109.5
C1—N1—N2—C30.8 (2)C11—C12—C13—C140.1 (3)
C1—N1—N2—C10172.37 (16)C15—N3—C14—C130.2 (3)
N2—N1—C1—C20.2 (2)C15—N3—C14—Cl1179.67 (15)
N2—N1—C1—C4178.97 (16)C12—C13—C14—N30.2 (3)
N1—C1—C2—C30.5 (2)C12—C13—C14—Cl1179.70 (16)
C4—C1—C2—C3178.14 (19)C14—N3—C15—C110.2 (3)
N1—N2—C3—C21.2 (2)C12—C11—C15—N30.1 (3)
C10—N2—C3—C2171.32 (18)C10—C11—C15—N3178.05 (18)
N1—N2—C3—C16174.30 (17)C17—N4—C16—O10.5 (3)
C10—N2—C3—C164.1 (3)C17—N4—C16—C3178.72 (18)
C1—C2—C3—N21.0 (2)N2—C3—C16—O118.9 (3)
C1—C2—C3—C16173.9 (2)C2—C3—C16—O1155.2 (2)
N1—C1—C4—C5171.48 (18)N2—C3—C16—N4161.82 (18)
C2—C1—C4—C57.0 (3)C2—C3—C16—N424.0 (3)
N1—C1—C4—C98.7 (3)C16—N4—C17—C1819.0 (3)
C2—C1—C4—C9172.8 (2)C16—N4—C17—C22161.1 (2)
C9—C4—C5—C60.4 (3)C22—C17—C18—C190.8 (3)
C1—C4—C5—C6179.4 (2)N4—C17—C18—C19179.33 (19)
C4—C5—C6—C70.6 (4)C17—C18—C19—C200.4 (3)
C5—C6—C7—C80.1 (4)C23—O2—C20—C193.9 (3)
C6—C7—C8—C90.6 (4)C23—O2—C20—C21177.9 (2)
C7—C8—C9—C40.7 (4)C18—C19—C20—O2177.8 (2)
C5—C4—C9—C80.2 (3)C18—C19—C20—C210.4 (3)
C1—C4—C9—C8180.0 (2)O2—C20—C21—C22177.6 (2)
N1—N2—C10—C1180.0 (2)C19—C20—C21—C220.8 (3)
C3—N2—C10—C1189.7 (2)C20—C21—C22—C170.3 (4)
N2—C10—C11—C1214.6 (3)C18—C17—C22—C210.5 (3)
N2—C10—C11—C15167.36 (17)N4—C17—C22—C21179.7 (2)
C15—C11—C12—C130.0 (3)C20—O2—C23—C24178.38 (19)
C10—C11—C12—C13178.07 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O10.972.352.876 (3)114
C18—H18···O10.932.312.861 (3)118
C12—H12···Cg10.932.743.354 (2)125
N4—H4···N3i0.862.593.406 (2)159
C23—H23A···Cg2ii0.972.713.571 (3)149
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC24H21ClN4O2
Mr432.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.0697 (12), 5.1399 (6), 40.990 (5)
β (°) 96.446 (2)
V3)2108.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.96, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
10472, 3699, 2571
Rint0.031
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.03
No. of reflections3699
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.23

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O10.972.352.876 (3)114
C18—H18···O10.932.312.861 (3)118
C12—H12···Cg10.932.743.354 (2)125
N4—H4···N3i0.862.593.406 (2)159
C23—H23A···Cg2ii0.972.713.571 (3)149
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.
 

Acknowledgements

This study was supported by the Science and Technology Developmental Project of Shandong Province (2008 GG10002034).

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJia, Z. J., Wu, Y., Huang, W., Zhang, P., Song, Y., Woolfrey, J., Sinha, U., Arfsten, A. E., Edwards, S. T., Hutchaleelaha, A., Hollennbach, S. J., Lambing, J. L., Scarborough, R. M. & Zhu, B. Y. (2004). Bioorg. Med. Chem. Lett. 14, 1229–1234.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Z., Tang, Z., Ding, X.-L., Dong, W.-L. & Zhao, B.-X. (2007). Acta Cryst. E63, o3348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, F., Zhao, B.-X., Huang, B., Zhang, L., Sun, C.-H., Dong, W.-L., Shin, D.-S. & Miao, J.-Y. (2006). Bioorg. Med. Chem. Lett. 16, 6342–6347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, Y., Dong, Z.-W., Zhao, B.-X., Ge, X., Meng, N., Shin, D.-S. & Miao, J.-Y. (2007). Bioorg. Med. Chem. 15, 6893–6899.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, J.-H., Fan, C.-D., Zhao, B.-X., Shin, D.-S., Dong, W.-L., Xie, Y.-S. & Miao, J.-Y. (2008). Bioorg. Med. Chem. 16, 10165–10171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, B.-X., Zhang, L., Zhu, X.-S., Wan, M.-S., Zhao, J., Zhang, Y., Zhang, S.-L. & Miao, J.-Y. (2008). Bioorg. Med. Chem. 16, 5171–5180.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o865-o866
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds