metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­terbium(III)]-μ-6-carb­oxy­nicotinato-μ-pyridine-2,5-di­carboxyl­ato] dihydrate]

aInstitute of Immunology, Key Laboratory of Natural Drugs and Immunological Engineering of Henan Province, College of Medicine, Henan University, Kaifeng 475003, People's Republic of China, bFirst Affiliated Hospital, Henan University, Kaifeng 475003, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475003, People's Republic of China
*Correspondence e-mail: baihl_hd@126.com

(Received 5 February 2009; accepted 10 March 2009; online 19 March 2009)

The title compound, {[Tb(C7H3NO4)(C7H4NO4)(H2O)2]·2H2O}n, is isotypic with the analogous TmIII compound [Li, Zhang, Wang & Bai (2009). Acta Cryst. E65, m411]. The TbIII atom is octa­coordinated by two water mol­ecules and by four carboxyl­ate O atoms and two pyridyl N atoms from two pyridine-2,5-dicarboxyl­ate (2,5-pydc) and two 6-carboxy­nicotinate (2,5-Hpydc) ligands. The 2,5-pydc and 2,5-Hpydc ligands bridge TbIII atoms, generating helical coordination polymers along [001]. An extensive network of O—H⋯O hydrogen bonds is formed between the coordination polymers and the uncoordinated water mol­ecules. The refined Flack parameter of 0.54 (2) suggests inversion twinning.

Related literature

For the isotypic TmIII compound, see Li et al. (2009[Li, S., Chen, Y., He, H.-M. & Ma, Y.-F. (2009). Acta Cryst. E65, m411.]). For other related structures, see: Huang et al. (2007[Huang, Y. G., Wu, B. L., Yuan, D. Q., Xu, Y. Q., Jiang, F. L. & Hong, M. C. (2007). Inorg. Chem. 46, 1171-1176.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(C7H3NO4)(C7H4NO4)(H2O)2]·2H2O

  • Mr = 562.20

  • Tetragonal, [I \overline 4]

  • a = 15.107 (2) Å

  • c = 14.8587 (15) Å

  • V = 3391.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.25 mm−1

  • T = 298 K

  • 0.12 × 0.11 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.617, Tmax = 0.713

  • 6901 measured reflections

  • 3001 independent reflections

  • 2886 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.131

  • S = 1.03

  • 3001 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 3.51 e Å−3

  • Δρmin = −1.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1387 Friedel pairs

  • Flack parameter: 0.54 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O12i 0.85 1.98 2.801 (12) 162
O9—H91⋯O4ii 0.85 1.86 2.706 (10) 180
O9—H92⋯O4iii 0.85 1.99 2.842 (11) 180
O10—H101⋯O7iv 0.85 1.83 2.679 (11) 179
O10—H102⋯O9i 0.85 2.15 3.000 (11) 180
O11—H111⋯O5 0.85 2.00 2.851 (12) 180
O11—H112⋯O2iv 0.85 1.91 2.758 (12) 180
O12—H121⋯O6v 0.85 2.15 3.000 (12) 180
O12—H122⋯O6vi 0.85 2.08 2.930 (13) 180
Symmetry codes: (i) [y+{\script{1\over 2}}, -x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -y+1, x, -z; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x, -y, z; (vi) y, -x, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title compound is shown in Fig. 1. Atom Tb1 displays octa-coordination through two water molecules, four carboxylate O atoms and two pyridyl N atoms from two 2,5-pydc and two 2,5-Hpydc ligands (2,5-pydc = pyridine-2,5-dicarboxylate). The 2,5-pydc and 2,5-Hpydc ligands bridge between TbIII atoms to generate helical coordination polymers along [001] (Fig. 2). An extensive network of O—H···O hydrogen bonds is formed between the coordination polymers and the lattice water molecules (Table 1 and Fig. 3).

Related literature top

For the isomorphous TmIII compound, see Li et al. (2009). For other related structures, see: Huang et al. (2007).

Experimental top

A mixture of terbium oxide (0.5 mmol), pyridine-2,5-dicarboxylic acid (0.5 mmol), in H2O (8 ml) and ethanol (8 ml) was sealed in a 25 ml Teflon-lined stainless steel autoclave and kept at 413 K for three days. Colourless crystals were obtained after cooling to room temperature with a yield of 27%. Elemental analysis calculated for C14H15N2TbO12: C 30.68, H 2.74, N 5.11%; Found: C 30.62, H 2.72, N 5.06%.

Refinement top

H atoms bound to C atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C). H atoms of the water molecules were placed so as to form a reasonable H-bond network and refined as riding with Uiso(H) = 1.5Ueq(O). The Flack parameter was refined as a full least-squares variable, and the refined value of 0.54 (2) suggests inversion twinning.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. One-dimensional coordination polymer running along [001].
[Figure 3] Fig. 3. Projection along [001], showing the tetragonal arrangement of coordination polymers. O—H···O hydrogen bonds are shown as dashed lines.
catena-Poly[[[diaquaterbium(III)]-µ-6-carboxynicotinato-µ- pyridine-2,5-dicarboxylato] dihydrate] top
Crystal data top
[Tb(C7H3NO4)(C7H4NO4)(H2O)2]·2H2ODx = 2.202 Mg m3
Mr = 562.20Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 3001 reflections
Hall symbol: I -4θ = 1.9–25.3°
a = 15.107 (2) ŵ = 4.25 mm1
c = 14.8587 (15) ÅT = 298 K
V = 3391.1 (7) Å3Block, colourless
Z = 80.12 × 0.11 × 0.08 mm
F(000) = 2192
Data collection top
Bruker APEXII CCD
diffractometer
3001 independent reflections
Radiation source: fine-focus sealed tube2886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 25.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1218
Tmin = 0.617, Tmax = 0.713k = 1817
6901 measured reflectionsl = 1317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.1007P)2 + 0.8682P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3001 reflectionsΔρmax = 3.51 e Å3
263 parametersΔρmin = 1.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 1387 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.54 (2)
Crystal data top
[Tb(C7H3NO4)(C7H4NO4)(H2O)2]·2H2OZ = 8
Mr = 562.20Mo Kα radiation
Tetragonal, I4µ = 4.25 mm1
a = 15.107 (2) ÅT = 298 K
c = 14.8587 (15) Å0.12 × 0.11 × 0.08 mm
V = 3391.1 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3001 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2886 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.713Rint = 0.072
6901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.131Δρmax = 3.51 e Å3
S = 1.03Δρmin = 1.17 e Å3
3001 reflectionsAbsolute structure: Flack (1983), 1387 Freidel pairs
263 parametersAbsolute structure parameter: 0.54 (2)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.30210 (3)0.22535 (3)0.22736 (3)0.01388 (17)
C10.1833 (6)0.4100 (6)0.1946 (6)0.0116 (19)
C20.1334 (7)0.4753 (6)0.1553 (6)0.0148 (19)
H2A0.11280.52220.19000.018*
C30.1132 (7)0.4720 (7)0.0639 (7)0.019 (2)
H3A0.07960.51660.03760.023*
C40.1433 (6)0.4021 (6)0.0129 (7)0.015 (2)
C50.1879 (7)0.3364 (7)0.0575 (8)0.021 (2)
H5A0.20460.28640.02510.025*
C60.2161 (6)0.4123 (6)0.2921 (6)0.015 (2)
C70.1302 (7)0.3959 (7)0.0870 (7)0.017 (2)
C80.1196 (7)0.1238 (6)0.1716 (7)0.014 (2)
C90.0975 (6)0.1488 (6)0.2710 (7)0.0129 (18)
C100.0233 (6)0.1192 (7)0.3157 (7)0.017 (2)
H10A0.01950.08650.28540.021*
C110.0131 (7)0.1383 (7)0.4052 (7)0.018 (2)
H11A0.03510.11580.43660.022*
C120.0768 (6)0.1929 (6)0.4506 (6)0.0115 (18)
C130.1449 (7)0.2207 (7)0.3980 (7)0.019 (2)
H13A0.18650.25770.42490.023*
C140.0684 (7)0.2114 (7)0.5505 (7)0.018 (2)
N10.1583 (5)0.2001 (5)0.3112 (6)0.0142 (16)
N20.2094 (5)0.3400 (5)0.1465 (6)0.0142 (17)
O10.2739 (5)0.3551 (4)0.3099 (5)0.0178 (15)
H10.30580.36430.35610.027*
O20.1862 (6)0.4677 (6)0.3436 (5)0.035 (2)
O30.1625 (5)0.3283 (5)0.1271 (5)0.0212 (16)
O40.0921 (6)0.4561 (5)0.1264 (5)0.0262 (18)
O50.1946 (5)0.1457 (5)0.1459 (5)0.0208 (16)
O60.0625 (5)0.0865 (5)0.1277 (5)0.0240 (17)
O70.0056 (6)0.1862 (6)0.5922 (6)0.033 (2)
O80.1326 (5)0.2550 (5)0.5846 (5)0.0214 (16)
O90.3704 (5)0.0819 (5)0.1997 (5)0.0240 (17)
H910.38220.07000.25430.036*
H920.42220.08490.17780.036*
O100.4504 (5)0.2736 (5)0.2620 (5)0.0236 (16)
H1010.46410.28680.20820.035*
H1020.48750.23270.27290.035*
O110.2668 (7)0.0205 (6)0.0225 (6)0.045 (2)
H1110.24520.05780.05930.068*
H1120.28120.02410.03270.068*
O120.1257 (7)0.0901 (6)0.0634 (7)0.046 (2)
H1210.07240.08900.08180.068*
H1220.11450.08210.00790.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.0145 (3)0.0144 (3)0.0128 (2)0.00004 (17)0.00014 (19)0.00015 (19)
C10.013 (5)0.011 (4)0.011 (4)0.002 (4)0.001 (4)0.006 (4)
C20.022 (5)0.008 (4)0.014 (4)0.002 (4)0.007 (4)0.001 (4)
C30.015 (5)0.020 (5)0.023 (5)0.007 (4)0.002 (4)0.001 (4)
C40.017 (5)0.013 (5)0.016 (5)0.003 (4)0.011 (4)0.000 (4)
C50.021 (5)0.016 (5)0.026 (5)0.005 (4)0.007 (4)0.009 (4)
C60.016 (5)0.012 (4)0.017 (6)0.001 (4)0.002 (4)0.008 (4)
C70.012 (5)0.020 (5)0.019 (5)0.000 (4)0.004 (4)0.007 (4)
C80.023 (5)0.006 (4)0.012 (4)0.004 (4)0.003 (4)0.006 (4)
C90.018 (4)0.013 (4)0.008 (4)0.002 (4)0.002 (4)0.006 (4)
C100.014 (5)0.018 (5)0.020 (5)0.001 (4)0.003 (4)0.004 (4)
C110.015 (5)0.023 (5)0.018 (5)0.000 (4)0.007 (4)0.007 (4)
C120.008 (4)0.015 (4)0.012 (4)0.004 (4)0.008 (4)0.000 (4)
C130.018 (5)0.022 (5)0.017 (5)0.001 (4)0.002 (4)0.006 (4)
C140.014 (5)0.025 (6)0.014 (5)0.001 (5)0.003 (4)0.004 (4)
N10.013 (4)0.012 (4)0.018 (4)0.001 (3)0.001 (4)0.002 (4)
N20.013 (4)0.015 (4)0.015 (4)0.003 (3)0.002 (3)0.002 (3)
O10.021 (3)0.016 (3)0.016 (3)0.001 (3)0.007 (3)0.003 (3)
O20.050 (5)0.035 (5)0.019 (4)0.019 (4)0.006 (4)0.002 (4)
O30.020 (4)0.026 (4)0.017 (4)0.007 (3)0.002 (3)0.004 (3)
O40.032 (4)0.024 (4)0.022 (4)0.017 (3)0.006 (3)0.002 (3)
O50.017 (4)0.021 (4)0.024 (4)0.003 (3)0.003 (3)0.004 (3)
O60.019 (4)0.029 (4)0.024 (4)0.005 (3)0.001 (3)0.006 (3)
O70.030 (4)0.045 (5)0.024 (4)0.016 (4)0.011 (4)0.004 (4)
O80.019 (4)0.032 (4)0.013 (3)0.010 (3)0.002 (3)0.007 (3)
O90.025 (4)0.031 (4)0.016 (3)0.000 (3)0.008 (3)0.007 (3)
O100.021 (4)0.035 (4)0.014 (4)0.001 (3)0.005 (3)0.006 (3)
O110.064 (6)0.039 (5)0.033 (5)0.012 (5)0.014 (5)0.010 (4)
O120.053 (6)0.045 (6)0.039 (5)0.018 (5)0.004 (5)0.011 (5)
Geometric parameters (Å, º) top
Tb1—O12.351 (7)C8—C91.560 (14)
Tb1—O52.356 (7)C9—N11.341 (12)
Tb1—O8i2.358 (7)C9—C101.379 (14)
Tb1—O3ii2.371 (7)C10—C111.368 (16)
Tb1—O102.412 (7)C10—H10A0.930
Tb1—O92.435 (8)C11—C121.435 (14)
Tb1—N22.531 (8)C11—H11A0.930
Tb1—N12.534 (8)C12—C131.359 (14)
C1—N21.335 (13)C12—C141.516 (13)
C1—C21.373 (13)C13—N11.343 (15)
C1—C61.531 (13)C13—H13A0.930
C2—C31.393 (15)C14—O71.195 (14)
C2—H2A0.930C14—O81.277 (12)
C3—C41.378 (15)O1—H10.850
C3—H3A0.930O3—Tb1i2.371 (7)
C4—C51.370 (15)O8—Tb1ii2.358 (7)
C4—C71.500 (15)O9—H910.850
C5—N21.363 (15)O9—H920.850
C5—H5A0.930O10—H1010.850
C6—O21.221 (13)O10—H1020.850
C6—O11.256 (12)O11—H1110.850
C7—O41.226 (13)O11—H1120.850
C7—O31.279 (13)O12—H1210.850
C8—O61.219 (12)O12—H1220.850
C8—O51.242 (13)
O1—Tb1—O5124.7 (3)O1—C6—C1114.1 (8)
O1—Tb1—O8i116.1 (3)O4—C7—O3123.3 (10)
O5—Tb1—O8i83.7 (2)O4—C7—C4119.3 (9)
O1—Tb1—O3ii81.4 (3)O3—C7—C4117.4 (9)
O5—Tb1—O3ii116.7 (3)O6—C8—O5127.2 (10)
O8i—Tb1—O3ii140.3 (2)O6—C8—C9117.9 (9)
O1—Tb1—O1078.8 (2)O5—C8—C9114.9 (8)
O5—Tb1—O10154.8 (3)N1—C9—C10121.9 (10)
O8i—Tb1—O1076.4 (2)N1—C9—C8114.6 (9)
O3ii—Tb1—O1072.5 (2)C10—C9—C8123.5 (9)
O1—Tb1—O9155.1 (2)C11—C10—C9119.4 (10)
O5—Tb1—O975.6 (3)C11—C10—H10A120.3
O8i—Tb1—O977.5 (3)C9—C10—H10A120.3
O3ii—Tb1—O975.8 (2)C10—C11—C12120.2 (10)
O10—Tb1—O984.9 (3)C10—C11—H11A119.9
O1—Tb1—N264.9 (3)C12—C11—H11A119.9
O5—Tb1—N274.0 (3)C13—C12—C11114.5 (9)
O8i—Tb1—N273.6 (3)C13—C12—C14124.7 (10)
O3ii—Tb1—N2142.3 (3)C11—C12—C14120.7 (9)
O10—Tb1—N2114.1 (3)N1—C13—C12126.4 (10)
O9—Tb1—N2139.8 (3)N1—C13—H13A116.8
O1—Tb1—N173.4 (3)C12—C13—H13A116.8
O5—Tb1—N165.5 (3)O7—C14—O8124.1 (10)
O8i—Tb1—N1145.1 (3)O7—C14—C12121.0 (10)
O3ii—Tb1—N172.1 (3)O8—C14—C12114.8 (9)
O10—Tb1—N1137.5 (3)C9—N1—C13117.4 (9)
O9—Tb1—N1108.2 (3)C9—N1—Tb1117.1 (7)
N2—Tb1—N182.1 (3)C13—N1—Tb1124.5 (7)
N2—C1—C2120.3 (9)C1—N2—C5118.7 (9)
N2—C1—C6115.4 (8)C1—N2—Tb1116.8 (6)
C2—C1—C6124.3 (9)C5—N2—Tb1124.4 (7)
C1—C2—C3120.6 (9)C6—O1—Tb1126.1 (6)
C1—C2—H2A119.7C6—O1—H1116.9
C3—C2—H2A119.7Tb1—O1—H1117.0
C4—C3—C2119.5 (9)C7—O3—Tb1i141.6 (7)
C4—C3—H3A120.2C8—O5—Tb1127.4 (6)
C2—C3—H3A120.2C14—O8—Tb1ii137.7 (6)
C5—C4—C3116.8 (9)Tb1—O9—H9196.6
C5—C4—C7119.9 (9)Tb1—O9—H92114.0
C3—C4—C7123.3 (9)H91—O9—H92100.6
N2—C5—C4123.9 (9)Tb1—O10—H10195.5
N2—C5—H5A118.0Tb1—O10—H102115.7
C4—C5—H5A118.0H101—O10—H102100.9
O2—C6—O1126.6 (9)H111—O11—H112132.5
O2—C6—C1119.3 (9)H121—O12—H12296.9
N2—C1—C2—C33.4 (15)O3ii—Tb1—N1—C1341.3 (8)
C6—C1—C2—C3174.1 (9)O10—Tb1—N1—C136.3 (10)
C1—C2—C3—C40.4 (15)O9—Tb1—N1—C13109.1 (8)
C2—C3—C4—C53.7 (15)N2—Tb1—N1—C13111.0 (8)
C2—C3—C4—C7175.7 (10)C2—C1—N2—C52.2 (14)
C3—C4—C5—N25.2 (16)C6—C1—N2—C5175.6 (9)
C7—C4—C5—N2174.2 (10)C2—C1—N2—Tb1179.6 (7)
N2—C1—C6—O2170.7 (9)C6—C1—N2—Tb11.9 (10)
C2—C1—C6—O211.7 (15)C4—C5—N2—C12.3 (16)
N2—C1—C6—O110.2 (12)C4—C5—N2—Tb1174.9 (8)
C2—C1—C6—O1167.4 (9)O1—Tb1—N2—C17.5 (6)
C5—C4—C7—O4178.2 (10)O5—Tb1—N2—C1134.4 (7)
C3—C4—C7—O41.1 (16)O8i—Tb1—N2—C1137.6 (7)
C5—C4—C7—O30.4 (15)O3ii—Tb1—N2—C121.2 (9)
C3—C4—C7—O3178.9 (9)O10—Tb1—N2—C171.1 (7)
O6—C8—C9—N1171.3 (9)O9—Tb1—N2—C1176.6 (6)
O5—C8—C9—N17.9 (12)N1—Tb1—N2—C167.8 (7)
O6—C8—C9—C1010.5 (13)O1—Tb1—N2—C5169.7 (9)
O5—C8—C9—C10170.3 (9)O5—Tb1—N2—C548.3 (8)
N1—C9—C10—C113.6 (15)O8i—Tb1—N2—C539.7 (8)
C8—C9—C10—C11174.4 (9)O3ii—Tb1—N2—C5161.5 (7)
C9—C10—C11—C123.5 (15)O10—Tb1—N2—C5106.2 (8)
C10—C11—C12—C130.9 (14)O9—Tb1—N2—C56.1 (10)
C10—C11—C12—C14177.4 (9)N1—Tb1—N2—C5115.0 (8)
C11—C12—C13—N11.9 (15)O2—C6—O1—Tb1161.3 (8)
C14—C12—C13—N1174.5 (10)C1—C6—O1—Tb119.6 (12)
C13—C12—C14—O7178.6 (11)O5—Tb1—O1—C630.8 (9)
C11—C12—C14—O75.3 (15)O8i—Tb1—O1—C670.2 (8)
C13—C12—C14—O81.4 (14)O3ii—Tb1—O1—C6147.4 (8)
C11—C12—C14—O8174.7 (9)O10—Tb1—O1—C6138.9 (8)
C10—C9—N1—C131.0 (14)O9—Tb1—O1—C6171.0 (7)
C8—C9—N1—C13177.2 (8)N2—Tb1—O1—C615.4 (8)
C10—C9—N1—Tb1169.6 (7)N1—Tb1—O1—C673.5 (8)
C8—C9—N1—Tb18.6 (10)O4—C7—O3—Tb1i12.3 (17)
C12—C13—N1—C91.8 (16)C4—C7—O3—Tb1i165.4 (7)
C12—C13—N1—Tb1165.8 (8)O6—C8—O5—Tb1176.0 (8)
O1—Tb1—N1—C9147.5 (7)C9—C8—O5—Tb13.1 (12)
O5—Tb1—N1—C95.4 (6)O1—Tb1—O5—C846.5 (9)
O8i—Tb1—N1—C935.5 (9)O8i—Tb1—O5—C8164.1 (8)
O3ii—Tb1—N1—C9126.4 (7)O3ii—Tb1—O5—C851.8 (8)
O10—Tb1—N1—C9161.3 (6)O10—Tb1—O5—C8157.8 (7)
O9—Tb1—N1—C958.6 (7)O9—Tb1—O5—C8117.3 (8)
N2—Tb1—N1—C981.4 (7)N2—Tb1—O5—C889.3 (8)
O1—Tb1—N1—C1344.8 (8)N1—Tb1—O5—C80.9 (8)
O5—Tb1—N1—C13173.0 (9)O7—C14—O8—Tb1ii23.9 (17)
O8i—Tb1—N1—C13156.8 (7)C12—C14—O8—Tb1ii156.1 (7)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O12iii0.851.982.801 (12)162
O9—H91···O4ii0.851.862.706 (10)180
O9—H92···O4iv0.851.992.842 (11)180
O10—H101···O7i0.851.832.679 (11)179
O10—H102···O9iii0.852.153.000 (11)180
O11—H111···O50.852.002.851 (12)180
O11—H112···O2i0.851.912.758 (12)180
O12—H121···O6v0.852.153.000 (12)180
O12—H122···O6vi0.852.082.930 (13)180
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) y+1/2, x+1/2, z+1/2; (iv) y+1, x, z; (v) x, y, z; (vi) y, x, z.

Experimental details

Crystal data
Chemical formula[Tb(C7H3NO4)(C7H4NO4)(H2O)2]·2H2O
Mr562.20
Crystal system, space groupTetragonal, I4
Temperature (K)298
a, c (Å)15.107 (2), 14.8587 (15)
V3)3391.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)4.25
Crystal size (mm)0.12 × 0.11 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.617, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
6901, 3001, 2886
Rint0.072
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.131, 1.03
No. of reflections3001
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.51, 1.17
Absolute structureFlack (1983), 1387 Freidel pairs
Absolute structure parameter0.54 (2)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O12i0.851.982.801 (12)161.9
O9—H91···O4ii0.851.862.706 (10)179.8
O9—H92···O4iii0.851.992.842 (11)179.9
O10—H101···O7iv0.851.832.679 (11)179.2
O10—H102···O9i0.852.153.000 (11)179.8
O11—H111···O50.852.002.851 (12)179.9
O11—H112···O2iv0.851.912.758 (12)179.8
O12—H121···O6v0.852.153.000 (12)179.8
O12—H122···O6vi0.852.082.930 (13)179.6
Symmetry codes: (i) y+1/2, x+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) y+1, x, z; (iv) x+1/2, y+1/2, z1/2; (v) x, y, z; (vi) y, x, z.
 

Acknowledgements

The authors are grateful for financial support from the Scientific Research Foundation of Outstanding Talented Persons of Henan Province (grant No. 74200510014).

References

First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, Y. G., Wu, B. L., Yuan, D. Q., Xu, Y. Q., Jiang, F. L. & Hong, M. C. (2007). Inorg. Chem. 46, 1171–1176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, S., Chen, Y., He, H.-M. & Ma, Y.-F. (2009). Acta Cryst. E65, m411.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds