organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-6,6′-Dimeth­­oxy-2,2′-[o-phenyl­ene­bis­(nitrilo­methyl­­idyne)]diphenol

aDepartment of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China, bClinical Medicine Department, Weifang Medical University, Shangdong 261042, People's Republic of China, and cShandong Donge Experimental High School, Shandong 252200, People's Republic of China
*Correspondence e-mail: yongwang@lcu.edu.cn

(Received 13 February 2009; accepted 10 March 2009; online 14 March 2009)

In the title compound, C22H20N2O4, the central benzene ring forms dihedral angles of 3.2 (2) and 61.1 (1)° with the two outer substituted benzene rings. Intra­molecular O—H⋯N hydrogen bonds are formed by both hydroxyl groups.

Related literature

For background literature concerning salen-type ligands, see: Zhang et al. (1990[Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2804.]). For related structures, see: Lo et al. (2006[Lo, W.-K., Wong, W.-K., Wong, W.-Y., Guo, J. P., Yeung, K.-T., Cheng, Y.-K., Yang, X. P. & Jones, R. A. (2006). Inorg. Chem. 45, 9315-9325.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O4

  • Mr = 376.40

  • Monoclinic, P 21 /c

  • a = 6.5863 (8) Å

  • b = 16.726 (2) Å

  • c = 17.023 (3) Å

  • β = 97.926 (2)°

  • V = 1857.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.33 × 0.15 × 0.09 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.992

  • 9269 measured reflections

  • 3263 independent reflections

  • 1217 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.128

  • S = 0.82

  • 3263 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.605 (4) 146
O3—H3⋯N2 0.82 1.82 2.542 (3) 146

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salen-type ligands are amongst the oldest ligands in coordination chemistry and have received considerable interest since Jacobsen and Katsuki first reported their significant success using chiral manganese(III) salen Schiff-base catalysts in the asymmetric epoxidation of unfunctionalized olefins (Zhang, et al., 1990).

The title compound (Fig. 1) was obtained by reaction of o-phenylenediamine and 2-hydroxy-3-methoxybenzaldehyde. The bond lengths and angles are comparable to those in the related compound N,N'-bis(3- methoxysalicylidene)phenylene-1,2-diamine (Lo et al., 2006). The central benzene ring is almost coplanar with the benzene ring C16–C21; the dihedral angle between the two planes is 3.21 (22) °. However, the dihedral angle of the central benzene ring and the benzene ring C8–C13 is 61.13 (11)°. Intramolecular O—H···N hydrogen bonds are formed by both hydroxyl groups (Table 1).

Related literature top

For background literature concerning salen-type ligands, see: Zhang et al. (1990). For related structures, see: Lo et al. (2006).

Experimental top

To a solution of o-phenylenediamine (3 mmol) in ethanol (30 ml) was added 2-hydroxy-3-methoxybenzaldehyde (6 mmol). The mixture was refluxed with stirring for 20 min and an orange precipitate was obtained. Orange crystals suitable for X-ray diffraction analysis formed after several weeks on slow evaporation of an ethanol solution at room temperature. Elemental analysis: calculated for C22H20N2O4: C 70.20, H 5.36, N 7.44%; found: C 70.28, H 5.32, N 7.49%.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms of the hydroxyl groups were placed in idealized positions and constrained to ride on their parent atoms with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.
(E,E)-6,6'-Dimethoxy-2,2'-[o- phenylenebis(nitrilomethylidyne)]diphenol top
Crystal data top
C22H20N2O4F(000) = 792
Mr = 376.40Dx = 1.346 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 802 reflections
a = 6.5863 (8) Åθ = 2.4–25.3°
b = 16.726 (2) ŵ = 0.09 mm1
c = 17.023 (3) ÅT = 298 K
β = 97.926 (2)°Block, orange
V = 1857.3 (4) Å30.33 × 0.15 × 0.09 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
3263 independent reflections
Radiation source: fine-focus sealed tube1217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.970, Tmax = 0.992k = 1919
9269 measured reflectionsl = 1020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
3263 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C22H20N2O4V = 1857.3 (4) Å3
Mr = 376.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5863 (8) ŵ = 0.09 mm1
b = 16.726 (2) ÅT = 298 K
c = 17.023 (3) Å0.33 × 0.15 × 0.09 mm
β = 97.926 (2)°
Data collection top
Siemens SMART CCD
diffractometer
3263 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1217 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.992Rint = 0.098
9269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.82Δρmax = 0.15 e Å3
3263 reflectionsΔρmin = 0.16 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1935 (4)0.21173 (18)0.39296 (16)0.0568 (8)
N20.0295 (4)0.26464 (15)0.52584 (18)0.0579 (8)
O10.0593 (4)0.15813 (15)0.30030 (15)0.0719 (7)
H10.01400.18990.33030.108*
O20.1592 (4)0.04788 (15)0.20699 (16)0.0868 (9)
O30.2802 (3)0.15729 (14)0.49515 (14)0.0676 (7)
H30.17190.18220.49030.101*
O40.6184 (3)0.08108 (14)0.53290 (13)0.0698 (7)
C10.2767 (6)0.2731 (2)0.4365 (2)0.0575 (10)
C20.1578 (6)0.3022 (2)0.5035 (2)0.0572 (10)
C30.2322 (6)0.3642 (2)0.5450 (2)0.0715 (11)
H3A0.15400.38430.59030.086*
C40.4199 (7)0.3955 (2)0.5195 (3)0.0834 (13)
H40.46890.43740.54750.100*
C50.5373 (6)0.3668 (3)0.4537 (3)0.0797 (13)
H50.66590.38870.43710.096*
C60.4654 (6)0.3057 (2)0.4120 (2)0.0719 (11)
H60.54510.28620.36670.086*
C70.3021 (5)0.1499 (2)0.37462 (19)0.0581 (10)
H70.42850.14520.39280.070*
C80.2348 (5)0.0871 (2)0.3265 (2)0.0555 (9)
C90.0623 (6)0.0944 (2)0.2904 (2)0.0552 (9)
C100.0088 (6)0.0337 (2)0.2413 (2)0.0590 (10)
C110.1242 (7)0.0340 (2)0.2324 (2)0.0754 (12)
H110.08870.07490.19980.090*
C120.2921 (7)0.0425 (3)0.2709 (3)0.0910 (14)
H120.36740.08970.26560.109*
C130.3491 (6)0.0175 (3)0.3167 (2)0.0819 (12)
H130.46540.01190.34160.098*
C140.2181 (7)0.0106 (2)0.1550 (3)0.1190 (17)
H14A0.22340.06190.18050.178*
H14B0.35100.00230.14140.178*
H14C0.12020.01210.10770.178*
C150.1427 (6)0.27815 (19)0.5911 (2)0.0595 (10)
H150.10030.31520.62620.071*
C160.3323 (5)0.23818 (19)0.6117 (2)0.0522 (9)
C170.3958 (5)0.1790 (2)0.5627 (2)0.0516 (9)
C180.5797 (5)0.1401 (2)0.5837 (2)0.0543 (9)
C190.7041 (5)0.1621 (2)0.6500 (2)0.0668 (11)
H190.83030.13710.66310.080*
C200.6450 (7)0.2217 (2)0.6987 (2)0.0743 (12)
H200.73140.23640.74430.089*
C210.4615 (6)0.2584 (2)0.6800 (2)0.0709 (11)
H210.42180.29770.71340.085*
C220.8046 (5)0.0386 (2)0.5504 (2)0.0837 (13)
H22A0.91760.07510.55220.125*
H22B0.81390.00080.51000.125*
H22C0.80880.01260.60090.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.064 (2)0.059 (2)0.0483 (18)0.0109 (17)0.0112 (15)0.0045 (17)
N20.059 (2)0.0576 (19)0.057 (2)0.0020 (16)0.0072 (16)0.0030 (17)
O10.0748 (18)0.0689 (18)0.076 (2)0.0043 (14)0.0235 (13)0.0008 (15)
O20.096 (2)0.085 (2)0.089 (2)0.0161 (16)0.0462 (17)0.0009 (17)
O30.0697 (18)0.0699 (17)0.0598 (16)0.0129 (13)0.0036 (13)0.0172 (14)
O40.0727 (18)0.0755 (17)0.0601 (16)0.0191 (14)0.0055 (13)0.0091 (15)
C10.067 (3)0.054 (2)0.054 (3)0.009 (2)0.020 (2)0.016 (2)
C20.066 (3)0.050 (2)0.059 (3)0.005 (2)0.019 (2)0.006 (2)
C30.076 (3)0.063 (3)0.077 (3)0.012 (2)0.017 (2)0.005 (2)
C40.106 (4)0.069 (3)0.081 (3)0.029 (3)0.035 (3)0.006 (3)
C50.081 (3)0.079 (3)0.083 (3)0.035 (3)0.027 (3)0.025 (3)
C60.077 (3)0.080 (3)0.059 (3)0.024 (2)0.013 (2)0.015 (2)
C70.060 (2)0.068 (3)0.047 (2)0.007 (2)0.0104 (18)0.010 (2)
C80.054 (2)0.062 (3)0.052 (2)0.001 (2)0.0114 (19)0.008 (2)
C90.062 (3)0.052 (2)0.050 (2)0.002 (2)0.0035 (19)0.007 (2)
C100.072 (3)0.061 (3)0.045 (2)0.009 (2)0.013 (2)0.011 (2)
C110.094 (3)0.071 (3)0.060 (3)0.007 (3)0.007 (2)0.004 (2)
C120.103 (4)0.076 (3)0.096 (4)0.021 (3)0.021 (3)0.015 (3)
C130.077 (3)0.085 (3)0.089 (3)0.018 (3)0.027 (2)0.006 (3)
C140.157 (4)0.110 (4)0.106 (4)0.039 (3)0.073 (3)0.011 (3)
C150.076 (3)0.048 (2)0.058 (3)0.002 (2)0.020 (2)0.004 (2)
C160.061 (2)0.044 (2)0.053 (2)0.0026 (18)0.0124 (19)0.0024 (19)
C170.058 (2)0.053 (2)0.043 (2)0.0057 (19)0.0038 (18)0.0003 (19)
C180.059 (2)0.058 (2)0.045 (2)0.005 (2)0.0057 (19)0.001 (2)
C190.064 (3)0.078 (3)0.058 (3)0.003 (2)0.007 (2)0.008 (2)
C200.088 (3)0.079 (3)0.052 (3)0.009 (2)0.002 (2)0.007 (2)
C210.088 (3)0.068 (3)0.055 (3)0.001 (2)0.002 (2)0.015 (2)
C220.075 (3)0.090 (3)0.086 (3)0.034 (2)0.013 (2)0.002 (3)
Geometric parameters (Å, º) top
N1—C71.272 (4)C8—C131.383 (4)
N1—C11.419 (4)C9—C101.391 (4)
N2—C151.270 (4)C10—C111.360 (5)
N2—C21.389 (4)C11—C121.368 (5)
O1—C91.330 (4)C11—H110.930
O1—H10.820C12—C131.357 (5)
O2—C101.342 (4)C12—H120.930
O2—C141.409 (4)C13—H130.930
O3—C171.339 (3)C14—H14A0.960
O3—H30.820C14—H14B0.960
O4—C181.360 (4)C14—H14C0.960
O4—C221.413 (3)C15—C161.417 (4)
C1—C61.370 (4)C15—H150.930
C1—C21.381 (4)C16—C211.385 (4)
C2—C31.381 (4)C16—C171.395 (4)
C3—C41.358 (4)C17—C181.377 (4)
C3—H3A0.930C18—C191.351 (4)
C4—C51.358 (5)C19—C201.385 (4)
C4—H40.930C19—H190.930
C5—C61.365 (5)C20—C211.354 (4)
C5—H50.930C20—H200.930
C6—H60.930C21—H210.930
C7—C81.439 (4)C22—H22A0.960
C7—H70.930C22—H22B0.960
C8—C91.370 (4)C22—H22C0.960
C7—N1—C1118.1 (3)C13—C12—C11120.3 (4)
C15—N2—C2123.4 (3)C13—C12—H12119.8
C9—O1—H1109.5C11—C12—H12119.8
C10—O2—C14117.7 (3)C12—C13—C8120.2 (4)
C17—O3—H3109.5C12—C13—H13119.9
C18—O4—C22117.7 (3)C8—C13—H13119.9
C6—C1—C2119.9 (4)O2—C14—H14A109.5
C6—C1—N1121.9 (4)O2—C14—H14B109.5
C2—C1—N1118.1 (3)H14A—C14—H14B109.5
C1—C2—C3119.1 (4)O2—C14—H14C109.5
C1—C2—N2116.6 (3)H14A—C14—H14C109.5
C3—C2—N2124.3 (4)H14B—C14—H14C109.5
C4—C3—C2119.9 (4)N2—C15—C16121.6 (3)
C4—C3—H3A120.1N2—C15—H15119.2
C2—C3—H3A120.1C16—C15—H15119.2
C5—C4—C3121.1 (4)C21—C16—C17118.3 (3)
C5—C4—H4119.4C21—C16—C15120.8 (4)
C3—C4—H4119.4C17—C16—C15120.9 (3)
C4—C5—C6119.7 (4)O3—C17—C18118.1 (3)
C4—C5—H5120.2O3—C17—C16121.6 (3)
C6—C5—H5120.2C18—C17—C16120.4 (3)
C5—C6—C1120.4 (4)C19—C18—O4125.7 (3)
C5—C6—H6119.8C19—C18—C17119.9 (4)
C1—C6—H6119.8O4—C18—C17114.4 (3)
N1—C7—C8121.8 (4)C18—C19—C20120.5 (4)
N1—C7—H7119.1C18—C19—H19119.8
C8—C7—H7119.1C20—C19—H19119.8
C9—C8—C13119.5 (4)C21—C20—C19120.1 (3)
C9—C8—C7122.0 (4)C21—C20—H20120.0
C13—C8—C7118.5 (4)C19—C20—H20120.0
O1—C9—C8122.5 (4)C20—C21—C16120.8 (4)
O1—C9—C10117.6 (4)C20—C21—H21119.6
C8—C9—C10119.9 (4)C16—C21—H21119.6
O2—C10—C11125.5 (4)O4—C22—H22A109.5
O2—C10—C9115.1 (4)O4—C22—H22B109.5
C11—C10—C9119.4 (4)H22A—C22—H22B109.5
C10—C11—C12120.6 (4)O4—C22—H22C109.5
C10—C11—H11119.7H22A—C22—H22C109.5
C12—C11—H11119.7H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.605 (4)146
O3—H3···N20.821.822.542 (3)146

Experimental details

Crystal data
Chemical formulaC22H20N2O4
Mr376.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.5863 (8), 16.726 (2), 17.023 (3)
β (°) 97.926 (2)
V3)1857.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.15 × 0.09
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
9269, 3263, 1217
Rint0.098
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.128, 0.82
No. of reflections3263
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.605 (4)146.4
O3—H3···N20.821.822.542 (3)146.4
 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of Liaocheng University (No. X051040).

References

First citationLo, W.-K., Wong, W.-K., Wong, W.-Y., Guo, J. P., Yeung, K.-T., Cheng, Y.-K., Yang, X. P. & Jones, R. A. (2006). Inorg. Chem. 45, 9315–9325.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801–2804.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds