organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(1,2,4,5-Tetra­zine-3,6-di­yl)dibenzo­nitrile

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: borowiak@amu.edu.pl

(Received 16 February 2009; accepted 9 March 2009; online 25 March 2009)

Mol­ecules of the title compound, C16H8N6, lie on crystallographic inversion centres. A dihedral angle of 16.1 (1)° is formed between the central tetra­zine ring and the plane of each cyano­phenyl group. The mol­ecules form stacks along [100] with a perpendicular inter­planar separation of 3.25 (1) Å. C—H⋯N inter­actions are formed between mol­ecules in neighbouring stacks.

Related literature

For synthesis details, see: Spychała et al. (1994[Spychała, J., Boykin, D. W., Wilson, W. D., Zhao, M., Tidwell, R. R., Dykstra, C. C., Hall, J. E., Jones, S. K. & Schinazi, R. F. (1994). Eur. J. Med. Chem. 29, 363-367.], 2000[Spychała, J. (2000). Synth. Commun. 30, 1083-1094.]). For related structures and discussion, see: Higashi & Osaki (1981[Higashi, T. & Osaki, K. (1981). Acta Cryst. B37, 777-779.]); Infantes et al. (2003[Infantes, L., Mahon, M. F., Male, L., Raithby, P. R., Teat, S. J., Sauer, J., Jagerovic, N., Elguero, J. & Motherwell, S. (2003). Helv. Chim. Acta, 86, 1205-1221.]).

[Scheme 1]

Experimental

Crystal data
  • C16H8N6

  • Mr = 284.28

  • Monoclinic, P 21 /c

  • a = 4.8447 (5) Å

  • b = 12.1054 (12) Å

  • c = 11.6927 (11) Å

  • β = 94.363 (8)°

  • V = 683.75 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.45 × 0.2 × 0.1 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]) Tmin = 0.925, Tmax = 0.991

  • 5912 measured reflections

  • 1768 independent reflections

  • 1094 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.135

  • S = 1.06

  • 1768 reflections

  • 116 parameters

  • All H-atom parameters refined

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N10i 0.989 (17) 2.539 (17) 3.370 (2) 141.6 (13)
C8—H8⋯N2ii 0.956 (17) 2.850 (17) 3.6106 (19) 137.2 (12)
C9—H9⋯N10iii 0.993 (17) 2.754 (17) 3.431 (2) 125.8 (12)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Infantes et al. (2003) have found that the supramolecular structures of some substituted phenyl derivatives of 1,2,4,5-tetrazine are comparable to those of their carboxylic acid analogues. Being inspired by that, we have compared the supramolecular structures of the title compound 3,6-bis(4-cyanophenyl)-1,2,4,5-tetrazine (hereafter I) and p-cyanobenzoic acid (Higashi & Osaki, 1981) (hereafter II).

In (I), the tetrazine molecule is located on a crystallographic inversion centre (Fig. 1). The phenyl rings are twisted with respect to the tetrazine ring by 16.1 (1)° in opposite directions. The cyano-groups are coplanar with their phenyl rings. Two C6—H6···N10(cyano) interactions related by a centre of inversion can be considered to link the molecules into 1-D chains (Fig. 2). The chains are "stepped" rather than flat (Fig. 3). Each molecule interacts with the neighbouring chain through C8—H8···N2(tetrazine) and C9—H9···N10(cyano) interactions (Fig. 2), and the molecules are stacked along [100] with a perpendicular interplanar spacing of 3.25 (1) Å. This structure contrasts with the layered structures of other phenyl-derivatives of 1,2,4,5 tetrazines described in the paper by Infantes et al. (2003).

In the crystal structure of (II), similar 1-D chains are formed through the well-known centrosymmetric carboxylic acid dimer on one side of the molecule and centrosymmetric C—H···N(cyano) interactions on the other side of the molecule. The latter interactions are closely comparable to those in (I), except that the chains in (II) lie in approximately flat layers parallel to the (201) planes. The distinction between the two structures arises because of differences between the lateral C—H···O interactions between chains in (II) and the C—H···N(tetrazine) and C—H···N(cyano) interactions in (I).

Related literature top

For synthesis details, see: Spychała et al. (1994, 2000). For related structures and discussion, see: Higashi & Osaki (1981); Infantes et al. (2003).

Experimental top

The title compound was obtained from a multi-step procedure starting from 4-amidinobenzamide hydrochloride and anhydrous hydrazine. Dehydration of the biscarbamoyl intermediate compound to the appropriate biscyano red product was effected by means of phosphorus oxychloride in the same way as described for 2,4-bis(4- carbamoylphenyl)-1,3,5-triazine (Spychała et al., 1994; Spychała (2000). M.p. 568–570 K (acetone); δH (CDCl3, TMS) 7.94 (d, 4H, J = 8.8 Hz, CH), 8.82 (d, 4H, J = 8.8 Hz, CH); δC (DMSO-d6) 114.7, 117.8, 128.2, 133.0, 135.6, 162.4; MS (EI) 284 (M+, C16H8N6; 13), 128 (100), 102 (9), 101 (33), 100 (7), 77 (9), 76 (12), 75 (16), 74 (4), 64 (11).

Single crystals were grown from hot acetone by slow cooling.

Refinement top

All H atoms were found from difference Fourier maps and refined freely with isotropic displacement parameters.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing displacement ellipsoids at the 50% probability level for non-H atoms. Symmetry code: (i) -x, -y, -z.
[Figure 2] Fig. 2. Chains of molecules (horizontal) linked by centrosymmetric pairs of C—H···N(cyano) interactions.
[Figure 3] Fig. 3. Stacks of molecules (vertical) showing the "stepped" arrangement within the 1-D chains.
4,4'-(1,2,4,5-Tetrazine-3,6-diyl)dibenzonitrile top
Crystal data top
C16H8N6F(000) = 292
Mr = 284.28Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2059 reflections
a = 4.8447 (5) Åθ = 2.4–29.6°
b = 12.1054 (12) ŵ = 0.09 mm1
c = 11.6927 (11) ÅT = 291 K
β = 94.363 (8)°Block, orange
V = 683.75 (12) Å30.45 × 0.2 × 0.1 mm
Z = 2
Data collection top
Kuma KM-4-CCD
diffractometer
1768 independent reflections
Radiation source: fine-focus sealed tube1094 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 8.1929 pixels mm-1θmax = 29.7°, θmin = 3.4°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1615
Tmin = 0.925, Tmax = 0.991l = 1514
5912 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.135All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.0311P]
where P = (Fo2 + 2Fc2)/3
1768 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C16H8N6V = 683.75 (12) Å3
Mr = 284.28Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.8447 (5) ŵ = 0.09 mm1
b = 12.1054 (12) ÅT = 291 K
c = 11.6927 (11) Å0.45 × 0.2 × 0.1 mm
β = 94.363 (8)°
Data collection top
Kuma KM-4-CCD
diffractometer
1768 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1094 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.991Rint = 0.017
5912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.135All H-atom parameters refined
S = 1.06Δρmax = 0.16 e Å3
1768 reflectionsΔρmin = 0.13 e Å3
116 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2003 (2)0.01444 (9)0.08623 (10)0.0532 (4)
N20.0256 (2)0.09630 (9)0.05942 (10)0.0528 (4)
C30.1693 (2)0.07922 (10)0.02639 (10)0.0418 (3)
C40.3614 (2)0.17078 (10)0.05676 (11)0.0434 (3)
C50.3849 (3)0.25828 (12)0.01845 (13)0.0546 (4)
C60.5664 (3)0.34327 (13)0.00878 (14)0.0596 (4)
C70.7235 (3)0.34205 (12)0.11308 (13)0.0542 (4)
C80.7010 (3)0.25569 (14)0.18883 (14)0.0626 (5)
C90.5218 (3)0.16937 (13)0.16039 (13)0.0564 (4)
C100.9104 (3)0.43269 (15)0.14189 (14)0.0682 (5)
N101.0547 (4)0.50498 (14)0.16340 (14)0.0986 (6)
H60.588 (3)0.4047 (13)0.0455 (16)0.080 (5)*
H50.271 (3)0.2606 (13)0.0895 (14)0.065 (4)*
H80.811 (3)0.2535 (13)0.2601 (15)0.078 (5)*
H90.509 (3)0.1054 (14)0.2128 (14)0.076 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0548 (7)0.0474 (7)0.0549 (7)0.0081 (5)0.0131 (5)0.0051 (5)
N20.0546 (7)0.0469 (7)0.0542 (7)0.0070 (5)0.0128 (5)0.0056 (5)
C30.0429 (7)0.0433 (7)0.0388 (7)0.0019 (6)0.0003 (5)0.0008 (5)
C40.0423 (7)0.0441 (7)0.0433 (7)0.0026 (6)0.0005 (5)0.0012 (6)
C50.0578 (8)0.0545 (9)0.0496 (8)0.0100 (7)0.0075 (6)0.0061 (7)
C60.0670 (10)0.0537 (9)0.0572 (9)0.0152 (8)0.0005 (7)0.0056 (7)
C70.0534 (8)0.0538 (9)0.0553 (9)0.0146 (7)0.0033 (6)0.0068 (7)
C80.0640 (9)0.0719 (10)0.0494 (8)0.0190 (8)0.0114 (7)0.0007 (8)
C90.0620 (9)0.0566 (9)0.0487 (8)0.0149 (7)0.0086 (7)0.0060 (7)
C100.0749 (10)0.0741 (11)0.0554 (9)0.0259 (9)0.0034 (8)0.0063 (8)
N100.1182 (13)0.1029 (13)0.0742 (11)0.0672 (11)0.0037 (9)0.0105 (9)
Geometric parameters (Å, º) top
N1—N21.3254 (14)C6—C71.388 (2)
N1—C3i1.3347 (17)C6—H60.989 (17)
N2—C31.3403 (17)C7—C81.380 (2)
C3—N1i1.3347 (17)C7—C101.446 (2)
C3—C41.4735 (17)C8—C91.383 (2)
C4—C51.3869 (19)C8—H80.955 (17)
C4—C91.3888 (18)C9—H90.993 (17)
C5—C61.375 (2)C10—N101.1360 (18)
C5—H50.962 (16)
N2—N1—C3i117.81 (11)C5—C6—H6120.8 (10)
N1—N2—C3117.55 (11)C7—C6—H6119.6 (10)
N1i—C3—N2124.64 (11)C8—C7—C6120.49 (13)
N1i—C3—C4117.94 (11)C8—C7—C10120.27 (13)
N2—C3—C4117.42 (11)C6—C7—C10119.25 (14)
C5—C4—C9119.68 (12)C7—C8—C9119.80 (14)
C5—C4—C3120.17 (12)C7—C8—H8121.0 (10)
C9—C4—C3120.15 (12)C9—C8—H8119.1 (10)
C6—C5—C4120.43 (13)C8—C9—C4119.99 (14)
C6—C5—H5119.6 (9)C8—C9—H9120.7 (10)
C4—C5—H5120.0 (9)C4—C9—H9119.4 (10)
C5—C6—C7119.60 (14)N10—C10—C7178.9 (2)
C3i—N1—N2—C30.3 (2)C4—C5—C6—C71.0 (2)
N1—N2—C3—N1i0.3 (2)C5—C6—C7—C80.7 (2)
N1—N2—C3—C4179.39 (11)C5—C6—C7—C10178.94 (15)
N1i—C3—C4—C5164.01 (13)C6—C7—C8—C90.4 (3)
N2—C3—C4—C516.25 (19)C10—C7—C8—C9179.95 (15)
N1i—C3—C4—C915.40 (19)C7—C8—C9—C41.2 (3)
N2—C3—C4—C9164.34 (13)C5—C4—C9—C80.9 (2)
C9—C4—C5—C60.2 (2)C3—C4—C9—C8179.71 (14)
C3—C4—C5—C6179.18 (13)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N10ii0.989 (17)2.539 (17)3.370 (2)141.6 (13)
C8—H8···N2iii0.956 (17)2.850 (17)3.6106 (19)137.2 (12)
C9—H9···N10iv0.993 (17)2.754 (17)3.431 (2)125.8 (12)
Symmetry codes: (ii) x+2, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H8N6
Mr284.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)4.8447 (5), 12.1054 (12), 11.6927 (11)
β (°) 94.363 (8)
V3)683.75 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.2 × 0.1
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.925, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5912, 1768, 1094
Rint0.017
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.135, 1.06
No. of reflections1768
No. of parameters116
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N10i0.989 (17)2.539 (17)3.370 (2)141.6 (13)
C8—H8···N2ii0.956 (17)2.850 (17)3.6106 (19)137.2 (12)
C9—H9···N10iii0.993 (17)2.754 (17)3.431 (2)125.8 (12)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by funds from Adam Mickiewicz University, Faculty of Chemistry.

References

First citationHigashi, T. & Osaki, K. (1981). Acta Cryst. B37, 777–779.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationInfantes, L., Mahon, M. F., Male, L., Raithby, P. R., Teat, S. J., Sauer, J., Jagerovic, N., Elguero, J. & Motherwell, S. (2003). Helv. Chim. Acta, 86, 1205–1221.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpychała, J. (2000). Synth. Commun. 30, 1083–1094.  Google Scholar
First citationSpychała, J., Boykin, D. W., Wilson, W. D., Zhao, M., Tidwell, R. R., Dykstra, C. C., Hall, J. E., Jones, S. K. & Schinazi, R. F. (1994). Eur. J. Med. Chem. 29, 363–367.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds