metal-organic compounds
[μ-Bis(trimethylsilyl)amido]bis[μ-N,N-dimethyl-N′,N′′-bis(trimethylsilyl)guanidinato]-triangulo-tricopper(I)
aSchool of Life Science and Technology, Shanxi University, Taiyuan 030006, People's Republic of China, and bInstitute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: mszhou@sxu.edu.cn
The title compound, [Cu3(C6H18NSi2)(C9H24N3Si2)2], is a trinuclear CuI complex. A crystallographic twofold axis passes through one CuI atom and the N atom of the bis(trimethylsilyl)amide ligand that bridges between the other two CuI atoms. The Cu—Cu bonds bridged by the guanadinate ligands [2.7913 (9) Å] are slightly longer than the Cu—Cu bond bridged by the bis(trimethylsilyl)amide ligand [2.6405 (11) Å].
Related literature
For background literature concerning the coordination chemistry of guanidinates, see: Chandra et al. (1970); Barker & Kilner (1994); Edelmann (1994); Bailey & Pace (2001); Zhou et al. (2007).
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809008745/bi2357sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809008745/bi2357Isup2.hkl
(CH3)2NCN (0.22 ml, 2.76 mmol) was added to a solution of LiN(SiMe3)2 (0.46 g, 2.76 mmol) in THF (30 ml) at -78°C. The resulting mixture was warmed to room temperature and stirred for 2 h. CuCl (0.27 g,2.76 mmol) was the added at -78°C and the mixture was warmed to again to room temperature and stirred for 24 h. The volatiles were removed in vacuo and the residue was extracted with dichloromethane then filtered. The filtrate was concentrated to give colorless crystals (0.14 g, 19%). M.p.: 398–400 K. 1H NMR (CDCl3):δ 0.10–0.43 (m, 54H, SiMe3), 2.86 (m, 12H, N(CH3)2). 13C NMR (CDCl3): δ 1.74~7.44 (SiMe3), 42.16 (N(CH3)2), 172.8 (NCN).
H atoms of the methyl groups were placed geometrically with C—H = 0.97 Å and allowed to ride during subsequent
with Uiso(H) = 1.5Ueq(C).Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure showing displacement ellipsoids at 50% probability. H atoms are omitted. Symmetry code: (i) -x, y, 3/2 - z. |
[Cu3(C6H18NSi2)(C9H24N3Si2)2] | F(000) = 1720 |
Mr = 812.00 | Dx = 1.261 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3322 reflections |
a = 16.445 (3) Å | θ = 2.3–27.5° |
b = 18.653 (4) Å | µ = 1.67 mm−1 |
c = 14.046 (3) Å | T = 213 K |
β = 96.943 (3)° | Block, colourless |
V = 4277.1 (15) Å3 | 0.30 × 0.20 × 0.20 mm |
Z = 4 |
Siemens SMART CCD diffractometer | 3773 independent reflections |
Radiation source: fine-focus sealed tube | 3394 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −19→16 |
Tmin = 0.622, Tmax = 0.717 | k = −21→22 |
8714 measured reflections | l = −16→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.0417P)2 + 4.1466P] where P = (Fo2 + 2Fc2)/3 |
3773 reflections | (Δ/σ)max < 0.001 |
193 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
[Cu3(C6H18NSi2)(C9H24N3Si2)2] | V = 4277.1 (15) Å3 |
Mr = 812.00 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.445 (3) Å | µ = 1.67 mm−1 |
b = 18.653 (4) Å | T = 213 K |
c = 14.046 (3) Å | 0.30 × 0.20 × 0.20 mm |
β = 96.943 (3)° |
Siemens SMART CCD diffractometer | 3773 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 3394 reflections with I > 2σ(I) |
Tmin = 0.622, Tmax = 0.717 | Rint = 0.033 |
8714 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.26 | Δρmax = 0.57 e Å−3 |
3773 reflections | Δρmin = −0.46 e Å−3 |
193 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.00565 (3) | 0.28899 (3) | 0.65704 (4) | 0.03181 (17) | |
Cu2 | 0.0000 | 0.15714 (4) | 0.7500 | 0.0297 (2) | |
N1 | 0.0253 (2) | 0.22736 (18) | 0.5568 (2) | 0.0335 (8) | |
N2 | 0.1160 (3) | 0.1407 (2) | 0.5116 (3) | 0.0489 (11) | |
N3 | 0.0812 (2) | 0.14177 (18) | 0.6683 (3) | 0.0327 (8) | |
N4 | 0.0000 | 0.3629 (2) | 0.7500 | 0.0331 (12) | |
Si1 | −0.03059 (9) | 0.24764 (8) | 0.44721 (9) | 0.0484 (4) | |
Si2 | 0.16644 (8) | 0.10002 (7) | 0.73019 (10) | 0.0384 (3) | |
Si3 | 0.09487 (9) | 0.40530 (7) | 0.75808 (11) | 0.0444 (4) | |
C1 | 0.0727 (3) | 0.1708 (2) | 0.5803 (3) | 0.0326 (10) | |
C2 | 0.1565 (4) | 0.1842 (3) | 0.4465 (4) | 0.0711 (18) | |
H2A | 0.1295 | 0.1780 | 0.3817 | 0.107* | |
H2B | 0.2134 | 0.1697 | 0.4493 | 0.107* | |
H2C | 0.1538 | 0.2342 | 0.4648 | 0.107* | |
C3 | 0.1235 (4) | 0.0641 (3) | 0.5000 (4) | 0.077 (2) | |
H3A | 0.0899 | 0.0397 | 0.5419 | 0.116* | |
H3B | 0.1803 | 0.0501 | 0.5163 | 0.116* | |
H3C | 0.1055 | 0.0512 | 0.4339 | 0.116* | |
C4 | −0.0495 (4) | 0.1674 (4) | 0.3693 (4) | 0.085 (2) | |
H4A | 0.0018 | 0.1512 | 0.3490 | 0.127* | |
H4B | −0.0875 | 0.1796 | 0.3133 | 0.127* | |
H4C | −0.0726 | 0.1294 | 0.4048 | 0.127* | |
C5 | 0.0166 (4) | 0.3231 (4) | 0.3864 (5) | 0.087 (2) | |
H5A | 0.0322 | 0.3609 | 0.4325 | 0.131* | |
H5B | −0.0226 | 0.3417 | 0.3352 | 0.131* | |
H5C | 0.0648 | 0.3060 | 0.3598 | 0.131* | |
C6 | −0.1333 (3) | 0.2798 (4) | 0.4694 (4) | 0.0747 (19) | |
H6A | −0.1633 | 0.2407 | 0.4946 | 0.112* | |
H6B | −0.1629 | 0.2966 | 0.4097 | 0.112* | |
H6C | −0.1273 | 0.3187 | 0.5155 | 0.112* | |
C7 | 0.2640 (3) | 0.1337 (3) | 0.6908 (4) | 0.0577 (15) | |
H7A | 0.2668 | 0.1196 | 0.6248 | 0.087* | |
H7B | 0.3102 | 0.1133 | 0.7315 | 0.087* | |
H7C | 0.2658 | 0.1855 | 0.6957 | 0.087* | |
C8 | 0.1675 (3) | 0.1227 (3) | 0.8591 (4) | 0.0543 (14) | |
H8A | 0.1733 | 0.1742 | 0.8675 | 0.081* | |
H8B | 0.2131 | 0.0987 | 0.8962 | 0.081* | |
H8C | 0.1165 | 0.1072 | 0.8809 | 0.081* | |
C9 | 0.1591 (4) | 0.0000 (2) | 0.7255 (4) | 0.0586 (15) | |
H9A | 0.1034 | −0.0146 | 0.7321 | 0.088* | |
H9B | 0.1962 | −0.0205 | 0.7774 | 0.088* | |
H9C | 0.1738 | −0.0169 | 0.6646 | 0.088* | |
C10 | 0.1033 (4) | 0.4625 (3) | 0.6504 (5) | 0.085 (2) | |
H10A | 0.0660 | 0.5027 | 0.6504 | 0.128* | |
H10B | 0.0894 | 0.4343 | 0.5927 | 0.128* | |
H10C | 0.1590 | 0.4801 | 0.6523 | 0.128* | |
C11 | 0.1138 (4) | 0.4635 (3) | 0.8661 (5) | 0.080 (2) | |
H11A | 0.0990 | 0.4379 | 0.9216 | 0.120* | |
H11B | 0.0808 | 0.5067 | 0.8564 | 0.120* | |
H11C | 0.1713 | 0.4765 | 0.8767 | 0.120* | |
C12 | 0.1783 (3) | 0.3378 (3) | 0.7637 (4) | 0.0574 (15) | |
H12A | 0.2309 | 0.3620 | 0.7708 | 0.086* | |
H12B | 0.1725 | 0.3097 | 0.7052 | 0.086* | |
H12C | 0.1751 | 0.3064 | 0.8182 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0350 (3) | 0.0301 (3) | 0.0309 (3) | 0.0019 (2) | 0.0064 (2) | 0.0008 (2) |
Cu2 | 0.0272 (4) | 0.0326 (4) | 0.0308 (4) | 0.000 | 0.0095 (3) | 0.000 |
N1 | 0.037 (2) | 0.040 (2) | 0.0247 (19) | 0.0004 (18) | 0.0059 (15) | −0.0007 (16) |
N2 | 0.058 (3) | 0.053 (3) | 0.040 (2) | 0.002 (2) | 0.025 (2) | −0.0066 (19) |
N3 | 0.032 (2) | 0.0316 (19) | 0.037 (2) | 0.0019 (16) | 0.0125 (16) | −0.0031 (16) |
N4 | 0.035 (3) | 0.031 (3) | 0.035 (3) | 0.000 | 0.007 (2) | 0.000 |
Si1 | 0.0512 (9) | 0.0670 (10) | 0.0269 (7) | −0.0083 (7) | 0.0038 (6) | 0.0050 (6) |
Si2 | 0.0318 (7) | 0.0326 (7) | 0.0523 (8) | 0.0043 (6) | 0.0111 (6) | 0.0007 (6) |
Si3 | 0.0451 (8) | 0.0317 (7) | 0.0583 (9) | −0.0068 (6) | 0.0139 (7) | −0.0011 (6) |
C1 | 0.032 (3) | 0.039 (3) | 0.029 (2) | −0.008 (2) | 0.0146 (19) | −0.0080 (19) |
C2 | 0.065 (4) | 0.104 (5) | 0.051 (4) | 0.006 (4) | 0.033 (3) | 0.002 (3) |
C3 | 0.106 (5) | 0.069 (4) | 0.060 (4) | 0.018 (4) | 0.024 (4) | −0.023 (3) |
C4 | 0.082 (5) | 0.118 (6) | 0.052 (4) | −0.026 (4) | −0.003 (3) | −0.024 (4) |
C5 | 0.092 (5) | 0.107 (5) | 0.062 (4) | −0.017 (4) | 0.005 (4) | 0.042 (4) |
C6 | 0.061 (4) | 0.107 (5) | 0.054 (4) | 0.014 (4) | −0.004 (3) | 0.017 (3) |
C7 | 0.035 (3) | 0.056 (3) | 0.085 (4) | 0.002 (3) | 0.020 (3) | 0.007 (3) |
C8 | 0.048 (3) | 0.053 (3) | 0.059 (3) | 0.007 (3) | −0.003 (3) | 0.004 (3) |
C9 | 0.063 (4) | 0.038 (3) | 0.077 (4) | 0.007 (3) | 0.019 (3) | 0.005 (3) |
C10 | 0.074 (5) | 0.074 (4) | 0.109 (6) | −0.022 (4) | 0.017 (4) | 0.041 (4) |
C11 | 0.074 (4) | 0.064 (4) | 0.105 (5) | −0.029 (3) | 0.021 (4) | −0.042 (4) |
C12 | 0.041 (3) | 0.046 (3) | 0.086 (4) | −0.008 (2) | 0.013 (3) | −0.010 (3) |
Cu1—Cu1i | 2.6405 (11) | C3—H3B | 0.970 |
Cu1—Cu2 | 2.7913 (9) | C3—H3C | 0.970 |
Cu2—Cu1i | 2.7912 (9) | C4—H4A | 0.970 |
Cu1—N1 | 1.875 (3) | C4—H4B | 0.970 |
Cu1—N4 | 1.908 (3) | C4—H4C | 0.970 |
Cu2—N3 | 1.885 (3) | C5—H5A | 0.970 |
Cu2—N3i | 1.885 (3) | C5—H5B | 0.970 |
N1—C1 | 1.329 (5) | C5—H5C | 0.970 |
N1—Si1 | 1.737 (4) | C6—H6A | 0.970 |
N2—C1 | 1.386 (5) | C6—H6B | 0.970 |
N2—C3 | 1.444 (6) | C6—H6C | 0.970 |
N2—C2 | 1.445 (6) | C7—H7A | 0.970 |
N3—C1 | 1.341 (5) | C7—H7B | 0.970 |
N3—Si2 | 1.742 (4) | C7—H7C | 0.970 |
N4—Si3 | 1.741 (3) | C8—H8A | 0.970 |
N4—Si3i | 1.741 (3) | C8—H8B | 0.970 |
N4—Cu1i | 1.909 (3) | C8—H8C | 0.970 |
Si1—C6 | 1.853 (6) | C9—H9A | 0.970 |
Si1—C4 | 1.859 (6) | C9—H9B | 0.970 |
Si1—C5 | 1.865 (6) | C9—H9C | 0.970 |
Si2—C8 | 1.858 (5) | C10—H10A | 0.970 |
Si2—C7 | 1.868 (5) | C10—H10B | 0.970 |
Si2—C9 | 1.871 (5) | C10—H10C | 0.970 |
Si3—C12 | 1.856 (5) | C11—H11A | 0.970 |
Si3—C11 | 1.862 (6) | C11—H11B | 0.970 |
Si3—C10 | 1.870 (6) | C11—H11C | 0.970 |
C2—H2A | 0.970 | C12—H12A | 0.970 |
C2—H2B | 0.970 | C12—H12B | 0.970 |
C2—H2C | 0.970 | C12—H12C | 0.970 |
C3—H3A | 0.970 | ||
N1—Cu1—N4 | 169.49 (13) | N2—C3—H3C | 109.5 |
N1—Cu1—Cu1i | 141.39 (11) | H3A—C3—H3C | 109.5 |
N4—Cu1—Cu1i | 46.23 (10) | H3B—C3—H3C | 109.5 |
N1—Cu1—Cu2 | 80.18 (11) | Si1—C4—H4A | 109.5 |
N4—Cu1—Cu2 | 108.00 (10) | Si1—C4—H4B | 109.5 |
Cu1i—Cu1—Cu2 | 61.768 (14) | H4A—C4—H4B | 109.5 |
N3—Cu2—N3i | 162.5 (2) | Si1—C4—H4C | 109.5 |
N3—Cu2—Cu1i | 119.01 (11) | H4A—C4—H4C | 109.5 |
N3i—Cu2—Cu1i | 77.47 (10) | H4B—C4—H4C | 109.5 |
N3—Cu2—Cu1 | 77.47 (10) | Si1—C5—H5A | 109.5 |
N3i—Cu2—Cu1 | 119.02 (11) | Si1—C5—H5B | 109.5 |
Cu1i—Cu2—Cu1 | 56.46 (3) | H5A—C5—H5B | 109.5 |
C1—N1—Si1 | 128.6 (3) | Si1—C5—H5C | 109.5 |
C1—N1—Cu1 | 116.7 (3) | H5A—C5—H5C | 109.5 |
Si1—N1—Cu1 | 114.3 (2) | H5B—C5—H5C | 109.5 |
C1—N2—C3 | 122.5 (4) | Si1—C6—H6A | 109.5 |
C1—N2—C2 | 121.9 (4) | Si1—C6—H6B | 109.5 |
C3—N2—C2 | 115.6 (4) | H6A—C6—H6B | 109.5 |
C1—N3—Si2 | 129.0 (3) | Si1—C6—H6C | 109.5 |
C1—N3—Cu2 | 119.8 (3) | H6A—C6—H6C | 109.5 |
Si2—N3—Cu2 | 110.53 (19) | H6B—C6—H6C | 109.5 |
Si3—N4—Si3i | 125.9 (3) | Si2—C7—H7A | 109.5 |
Si3—N4—Cu1 | 104.80 (7) | Si2—C7—H7B | 109.5 |
Si3i—N4—Cu1 | 113.64 (8) | H7A—C7—H7B | 109.5 |
Si3—N4—Cu1i | 113.64 (8) | Si2—C7—H7C | 109.5 |
Si3i—N4—Cu1i | 104.80 (7) | H7A—C7—H7C | 109.5 |
Cu1—N4—Cu1i | 87.5 (2) | H7B—C7—H7C | 109.5 |
N1—Si1—C6 | 108.5 (2) | Si2—C8—H8A | 109.5 |
N1—Si1—C4 | 112.3 (3) | Si2—C8—H8B | 109.5 |
C6—Si1—C4 | 105.6 (3) | H8A—C8—H8B | 109.5 |
N1—Si1—C5 | 111.4 (3) | Si2—C8—H8C | 109.5 |
C6—Si1—C5 | 105.7 (3) | H8A—C8—H8C | 109.5 |
C4—Si1—C5 | 112.8 (3) | H8B—C8—H8C | 109.5 |
N3—Si2—C8 | 107.3 (2) | Si2—C9—H9A | 109.5 |
N3—Si2—C7 | 111.7 (2) | Si2—C9—H9B | 109.5 |
C8—Si2—C7 | 107.8 (3) | H9A—C9—H9B | 109.5 |
N3—Si2—C9 | 112.6 (2) | Si2—C9—H9C | 109.5 |
C8—Si2—C9 | 104.8 (2) | H9A—C9—H9C | 109.5 |
C7—Si2—C9 | 112.3 (2) | H9B—C9—H9C | 109.5 |
N4—Si3—C12 | 110.3 (2) | Si3—C10—H10A | 109.5 |
N4—Si3—C11 | 112.2 (2) | Si3—C10—H10B | 109.5 |
C12—Si3—C11 | 108.1 (3) | H10A—C10—H10B | 109.5 |
N4—Si3—C10 | 111.1 (2) | Si3—C10—H10C | 109.5 |
C12—Si3—C10 | 107.1 (3) | H10A—C10—H10C | 109.5 |
C11—Si3—C10 | 107.7 (3) | H10B—C10—H10C | 109.5 |
N1—C1—N3 | 122.8 (3) | Si3—C11—H11A | 109.5 |
N1—C1—N2 | 119.0 (4) | Si3—C11—H11B | 109.5 |
N3—C1—N2 | 118.2 (4) | H11A—C11—H11B | 109.5 |
N2—C2—H2A | 109.5 | Si3—C11—H11C | 109.5 |
N2—C2—H2B | 109.5 | H11A—C11—H11C | 109.5 |
H2A—C2—H2B | 109.5 | H11B—C11—H11C | 109.5 |
N2—C2—H2C | 109.5 | Si3—C12—H12A | 109.5 |
H2A—C2—H2C | 109.5 | Si3—C12—H12B | 109.5 |
H2B—C2—H2C | 109.5 | H12A—C12—H12B | 109.5 |
N2—C3—H3A | 109.5 | Si3—C12—H12C | 109.5 |
N2—C3—H3B | 109.5 | H12A—C12—H12C | 109.5 |
H3A—C3—H3B | 109.5 | H12B—C12—H12C | 109.5 |
Symmetry code: (i) −x, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu3(C6H18NSi2)(C9H24N3Si2)2] |
Mr | 812.00 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 213 |
a, b, c (Å) | 16.445 (3), 18.653 (4), 14.046 (3) |
β (°) | 96.943 (3) |
V (Å3) | 4277.1 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.67 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.622, 0.717 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8714, 3773, 3394 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.118, 1.26 |
No. of reflections | 3773 |
No. of parameters | 193 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.57, −0.46 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Acknowledgements
The authors thank the Natural Science Foundation of China (grant No. 20672070; M. Zhou), the Natural Science Foundation of Shanxi (grant No. 2007011020) and the Foundation for Returned Overseas Chinese Scholars of Shanxi Province (2006; M. Zhou).
References
Bailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91–141. Web of Science CrossRef CAS Google Scholar
Barker, J. & Kilner, M. (1994). Coord. Chem. Rev. 133, 219–300. CrossRef CAS Web of Science Google Scholar
Chandra, G., Jenkins, A. D., Lappert, M. F. & Srivastava, R. C. (1970). J. Chem. Soc. A, pp. 2550–2558. CrossRef Google Scholar
Edelmann, F. T. (1994). Coord. Chem. Rev. 137, 403–481. CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Zhou, M.-S., Tong, H.-B., Wei, X.-H. & Liu, D.-S. (2007). J. Organomet. Chem. 692, 5195–5202. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Since the first guanidinato complex was reported by Lapper and coworkers (Chandra et al., 1970), the coordination chemistry of guanidinates has been well explored for main group metals as well as transition metals (Bailey & Pace, 2001; Barker & Kilner, 1994; 1994; Edelmann, 1994). The trigonal-planar CN3 unit provides easy accessibillity and the possibility of substituent variation, which allows for tuning of the steric and electronic properties of the ligands. Recently, we reported a series of early transition metal guanidinates and their applications in the polymerization of ethylene (Zhou et al., 2007). Here we describe the synthesis and crystal structure of a new copper(I) guanidinato complex.
The molecular structure is illustrated in Fig. 1. In the trinuclear copper compound, each CuI atom coordinates to the other two CuI atoms and two N from the ligands. Atoms Cu1, Cu2, Cu1i and N4 are exactly co-planar with a crystallographic 2-fold rotation axis passing through Cu2 and N4. The bond lengths Cu1—Cu2 and Cu1i—Cu2 are therefore identical, whereas the bond length Cu1—Cu1i is slightly shorter (Table 1). The Cu1—N1 and Cu2—N3 bond lengths are 1.875 (3) and 1.885 (3) Å, respectively. In the guanidinato ligand, the bond lengths C1—N1, C1—N2 and C1—N3 are 1.329 (5), 1.386 (5) and 1.341 (5) Å, respectively. The bond angle N1—C1—N3 is 122.8 (3)°. The dihedral angle between N1/C1/N3 and Cu1/Cu2/N3 is 31.8° and that between Cu1/Cu2/Cu1i and Cu1/Cu2/N3 is 42.0°.