organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-3-nitro­benzyl cyanide

aDepartment of Pharmacy, GuangDong Vocational and Technical College of Chemical Engineering Pharmaceutics, Guangzhou 510520, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: njjhs@163.com

(Received 29 November 2008; accepted 8 March 2009; online 14 March 2009)

The title compound, C9H8N2O, was prepared from o-xylene by nitration, oxidation, hydrolysis, reduction, chlorination and cyanation. There are two mol­ecules in the asymmetric unit with a dihedral angle of 20.15 (7)° between their aromatic rings.

Related literature

For related literature, see: Wang et al. (1999[Wang, S. Q., Deng, X. Y. & Wang, S. J. (1999). Shenyang Yaoke Daxue Xuebao, 17, 103-104.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2O2

  • Mr = 176.18

  • Monoclinic, P 21 /c

  • a = 17.216 (3) Å

  • b = 7.1950 (14) Å

  • c = 15.746 (3) Å

  • β = 117.10 (3)°

  • V = 1736.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.962, Tmax = 0.981

  • 3258 measured reflections

  • 3129 independent reflections

  • 2033 reflections with I > 2σ(I)

  • Rint = 0.029

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.197

  • S = 1.02

  • 3129 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software ; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-Methyl-3-nitrobenzyl cyanide is important chemical material of effective medicines used for Parkinson's disease, which can be useful not only for the treatment of PD, but also for the treatment of RLS. We report here the crystal structure of the title compound, (I), which is of interest to us in the field.

The molecular structure of (I) is shown in Fig.1, where the dash line indicates C—H···O hydrogen bonds (Table 2). The dihedral angle between the two aromatic rings of the molecules in the asymmetric unit is 20.15 (7)°.

Related literature top

For related literature, see: Wang et al. (1999).

Experimental top

The title compound, (I) was synthesized according to a literature reported before (Wang, 1999). The crystals were obtained by dissolving (I) (0.35 g, 2.0 mmol) into 25 ml of methanol and evaporating the solvent slowly at room temperature for about 4 d.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2Ueq of the carrier atom. The O—H and N—H distances were constrained to 0.82Å and 0.86Å and these H atoms were refined as riding, with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), which is a asymmetric unit with two molecules, with the atom-labeling scheme. Displacement ellipsoids at the 30% probability level. Dash lines indicate C—H···O hydrogen bonds.
2-Methyl-3-nitrobenzyl cyanide top
Crystal data top
C9H8N2O2F(000) = 736
Mr = 176.18Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 17.216 (3) Åθ = 10–13°
b = 7.1950 (14) ŵ = 0.10 mm1
c = 15.746 (3) ÅT = 298 K
β = 117.10 (3)°Block, yellow
V = 1736.3 (7) Å30.40 × 0.30 × 0.20 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2033 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.2°, θmin = 1.3°
ω/2θ scansh = 2018
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.962, Tmax = 0.981l = 018
3258 measured reflections3 standard reflections every 200 reflections
3129 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.06P)2 + 2.6P]
where P = (Fo2 + 2Fc2)/3
3129 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H8N2O2V = 1736.3 (7) Å3
Mr = 176.18Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.216 (3) ŵ = 0.10 mm1
b = 7.1950 (14) ÅT = 298 K
c = 15.746 (3) Å0.40 × 0.30 × 0.20 mm
β = 117.10 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2033 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.962, Tmax = 0.9813 standard reflections every 200 reflections
3258 measured reflections intensity decay: none
3129 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
3129 reflectionsΔρmin = 0.27 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4276 (3)0.7334 (6)0.1977 (2)0.1103 (13)
O20.3421 (2)0.9322 (6)0.0964 (3)0.1045 (12)
N10.7122 (2)0.5898 (7)0.0502 (3)0.0945 (14)
N20.4027 (3)0.8202 (6)0.1242 (3)0.0745 (10)
C10.6910 (2)0.6447 (6)0.0045 (3)0.0697 (11)
C20.6654 (2)0.7139 (6)0.0738 (3)0.0612 (10)
H2A0.69230.83440.09590.073*
H2B0.68780.63060.12820.073*
C30.5958 (3)0.7856 (7)0.2075 (2)0.0795 (13)
H3A0.65480.76390.21890.119*
H3B0.58010.69650.24250.119*
H3C0.59100.90880.22810.119*
C40.5348 (2)0.7660 (5)0.1016 (2)0.0516 (9)
C50.4440 (2)0.7870 (5)0.0633 (2)0.0497 (8)
C60.3884 (2)0.7784 (5)0.0346 (2)0.0552 (9)
H6A0.32870.79660.05790.066*
C70.4230 (2)0.7427 (5)0.0959 (2)0.0576 (9)
H7A0.38670.73270.16110.069*
C80.5115 (2)0.7220 (5)0.0609 (2)0.0511 (8)
H8A0.53480.70000.10290.061*
C90.5673 (2)0.7334 (5)0.0369 (2)0.0517 (8)
O30.0637 (2)0.2551 (6)0.2586 (2)0.1082 (13)
O40.1521 (2)0.0640 (5)0.2452 (2)0.1002 (12)
N30.2116 (2)0.4233 (6)0.2708 (3)0.0882 (12)
N40.0918 (2)0.1720 (6)0.2117 (2)0.0720 (10)
C100.1920 (2)0.3586 (6)0.1986 (3)0.0605 (10)
C110.1684 (2)0.2786 (6)0.1044 (2)0.0602 (10)
H11A0.19400.15580.11260.072*
H11B0.19320.35500.07210.072*
C120.1011 (3)0.1927 (6)0.0956 (3)0.0706 (11)
H12A0.07450.11500.15110.106*
H12B0.15290.13380.04870.106*
H12C0.11600.31050.11290.106*
C130.0386 (2)0.2224 (5)0.0551 (2)0.0495 (8)
C140.0515 (2)0.2114 (5)0.1080 (2)0.0512 (9)
C150.1095 (2)0.2325 (5)0.0709 (2)0.0516 (8)
H15A0.16930.22030.10940.062*
C160.0764 (2)0.2721 (5)0.0249 (2)0.0504 (8)
H16A0.11390.28900.05200.060*
C170.0121 (2)0.2867 (5)0.0803 (2)0.0502 (8)
H17A0.03390.31260.14500.060*
C180.0704 (2)0.2634 (5)0.0415 (2)0.0458 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.128 (3)0.158 (4)0.0600 (19)0.017 (3)0.055 (2)0.003 (2)
O20.086 (2)0.132 (3)0.116 (3)0.003 (2)0.063 (2)0.023 (2)
N10.055 (2)0.133 (4)0.092 (3)0.008 (2)0.030 (2)0.020 (3)
N20.071 (2)0.097 (3)0.060 (2)0.022 (2)0.0345 (19)0.020 (2)
C10.0400 (19)0.083 (3)0.071 (3)0.003 (2)0.0123 (19)0.007 (2)
C20.0457 (19)0.075 (3)0.053 (2)0.0042 (18)0.0141 (17)0.0080 (19)
C30.075 (3)0.109 (4)0.0365 (19)0.012 (3)0.0092 (18)0.013 (2)
C40.058 (2)0.054 (2)0.0315 (16)0.0093 (17)0.0113 (15)0.0027 (15)
C50.058 (2)0.0488 (19)0.0431 (18)0.0086 (16)0.0241 (16)0.0080 (16)
C60.0438 (18)0.064 (2)0.0459 (19)0.0013 (17)0.0100 (15)0.0042 (17)
C70.0483 (19)0.072 (3)0.0361 (17)0.0021 (18)0.0046 (15)0.0037 (17)
C80.0519 (19)0.063 (2)0.0360 (17)0.0003 (17)0.0175 (15)0.0011 (16)
C90.0432 (18)0.054 (2)0.0405 (17)0.0022 (16)0.0039 (14)0.0031 (16)
O30.122 (3)0.158 (4)0.0441 (16)0.009 (3)0.0369 (18)0.017 (2)
O40.093 (2)0.117 (3)0.0479 (17)0.011 (2)0.0052 (16)0.0230 (18)
N30.059 (2)0.116 (3)0.056 (2)0.012 (2)0.0029 (17)0.012 (2)
N40.080 (2)0.088 (3)0.0327 (16)0.010 (2)0.0124 (17)0.0016 (18)
C100.0376 (18)0.074 (3)0.051 (2)0.0045 (18)0.0044 (16)0.001 (2)
C110.0456 (19)0.072 (3)0.052 (2)0.0026 (18)0.0125 (16)0.0015 (19)
C120.072 (3)0.091 (3)0.060 (2)0.009 (2)0.041 (2)0.001 (2)
C130.056 (2)0.0479 (19)0.0421 (18)0.0011 (16)0.0200 (16)0.0057 (15)
C140.057 (2)0.062 (2)0.0262 (15)0.0049 (17)0.0112 (14)0.0005 (15)
C150.0441 (18)0.056 (2)0.0408 (17)0.0026 (16)0.0069 (15)0.0022 (16)
C160.0410 (17)0.067 (2)0.0411 (18)0.0052 (16)0.0167 (14)0.0049 (17)
C170.0472 (18)0.063 (2)0.0314 (16)0.0031 (16)0.0099 (14)0.0006 (15)
C180.0391 (16)0.055 (2)0.0357 (16)0.0007 (15)0.0103 (14)0.0028 (15)
Geometric parameters (Å, º) top
O1—N21.209 (5)O3—N41.209 (5)
O2—N21.231 (5)O4—N41.209 (5)
N1—C11.148 (5)N3—C101.129 (5)
N2—C51.451 (5)N4—C141.483 (4)
C1—C21.440 (6)C10—C111.465 (5)
C2—C91.522 (5)C11—C181.521 (4)
C2—H2A0.9700C11—H11A0.9700
C2—H2B0.9700C11—H11B0.9700
C3—C41.519 (5)C12—C131.492 (5)
C3—H3A0.9600C12—H12A0.9600
C3—H3B0.9600C12—H12B0.9600
C3—H3C0.9600C12—H12C0.9600
C4—C91.388 (5)C13—C141.389 (5)
C4—C51.404 (5)C13—C181.394 (4)
C5—C61.397 (5)C14—C151.375 (5)
C6—C71.370 (5)C15—C161.378 (4)
C6—H6A0.9300C15—H15A0.9300
C7—C81.371 (5)C16—C171.372 (4)
C7—H7A0.9300C16—H16A0.9300
C8—C91.396 (4)C17—C181.402 (4)
C8—H8A0.9300C17—H17A0.9300
O1—N2—O2123.5 (4)O4—N4—O3123.7 (4)
O1—N2—C5118.8 (4)O4—N4—C14118.8 (4)
O2—N2—C5117.7 (4)O3—N4—C14117.5 (4)
N1—C1—C2179.4 (4)N3—C10—C11178.2 (4)
C1—C2—C9114.4 (3)C10—C11—C18113.6 (3)
C1—C2—H2A108.7C10—C11—H11A108.8
C9—C2—H2A108.7C18—C11—H11A108.8
C1—C2—H2B108.7C10—C11—H11B108.8
C9—C2—H2B108.7C18—C11—H11B108.8
H2A—C2—H2B107.6H11A—C11—H11B107.7
C4—C3—H3A109.5C13—C12—H12A109.5
C4—C3—H3B109.5C13—C12—H12B109.5
H3A—C3—H3B109.5H12A—C12—H12B109.5
C4—C3—H3C109.5C13—C12—H12C109.5
H3A—C3—H3C109.5H12A—C12—H12C109.5
H3B—C3—H3C109.5H12B—C12—H12C109.5
C9—C4—C5116.4 (3)C14—C13—C18116.1 (3)
C9—C4—C3120.9 (3)C14—C13—C12124.2 (3)
C5—C4—C3122.6 (3)C18—C13—C12119.7 (3)
C6—C5—C4122.6 (3)C15—C14—C13124.6 (3)
C6—C5—N2116.2 (3)C15—C14—N4115.0 (3)
C4—C5—N2121.2 (3)C13—C14—N4120.3 (3)
C7—C6—C5119.1 (3)C14—C15—C16117.9 (3)
C7—C6—H6A120.5C14—C15—H15A121.0
C5—C6—H6A120.5C16—C15—H15A121.0
C6—C7—C8119.8 (3)C17—C16—C15119.8 (3)
C6—C7—H7A120.1C17—C16—H16A120.1
C8—C7—H7A120.1C15—C16—H16A120.1
C7—C8—C9121.1 (3)C16—C17—C18121.5 (3)
C7—C8—H8A119.4C16—C17—H17A119.3
C9—C8—H8A119.4C18—C17—H17A119.3
C4—C9—C8121.0 (3)C13—C18—C17119.9 (3)
C4—C9—C2118.9 (3)C13—C18—C11119.5 (3)
C8—C9—C2120.1 (3)C17—C18—C11120.6 (3)
N1—C1—C2—C9173 (100)N3—C10—C11—C18131 (15)
C9—C4—C5—C60.8 (5)C18—C13—C14—C152.0 (5)
C3—C4—C5—C6176.6 (4)C12—C13—C14—C15177.8 (4)
C9—C4—C5—N2179.5 (3)C18—C13—C14—N4178.7 (3)
C3—C4—C5—N23.0 (6)C12—C13—C14—N41.2 (5)
O1—N2—C5—C6138.3 (4)O4—N4—C14—C1541.7 (5)
O2—N2—C5—C639.6 (5)O3—N4—C14—C15136.1 (4)
O1—N2—C5—C442.1 (5)O4—N4—C14—C13137.5 (4)
O2—N2—C5—C4140.0 (4)O3—N4—C14—C1344.7 (5)
C4—C5—C6—C71.9 (6)C13—C14—C15—C161.8 (6)
N2—C5—C6—C7178.4 (4)N4—C14—C15—C16179.0 (3)
C5—C6—C7—C82.1 (6)C14—C15—C16—C170.9 (5)
C6—C7—C8—C91.1 (6)C15—C16—C17—C180.5 (5)
C5—C4—C9—C80.2 (5)C14—C13—C18—C171.4 (5)
C3—C4—C9—C8177.7 (4)C12—C13—C18—C17178.2 (3)
C5—C4—C9—C2178.6 (3)C14—C13—C18—C11179.8 (3)
C3—C4—C9—C21.1 (5)C12—C13—C18—C110.6 (5)
C7—C8—C9—C40.0 (6)C16—C17—C18—C130.7 (5)
C7—C8—C9—C2178.7 (3)C16—C17—C18—C11179.5 (3)
C1—C2—C9—C4168.4 (4)C10—C11—C18—C13168.2 (3)
C1—C2—C9—C812.9 (5)C10—C11—C18—C1713.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O10.962.402.852 (8)108
C12—H12A···O30.962.422.864 (6)108

Experimental details

Crystal data
Chemical formulaC9H8N2O2
Mr176.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.216 (3), 7.1950 (14), 15.746 (3)
β (°) 117.10 (3)
V3)1736.3 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.962, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
3258, 3129, 2033
Rint0.029
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.197, 1.02
No. of reflections3129
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O10.96002.40002.852 (8)108.00
C12—H12A···O30.96002.42002.864 (6)108.00
 

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. Q., Deng, X. Y. & Wang, S. J. (1999). Shenyang Yaoke Daxue Xuebao, 17, 103–104.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds