organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′-Amino-1′-(4-chloro­phen­yl)-1,7′,7′-tri­methyl-2,5′-dioxo-5′,6′,7′,8′-tetra­hydro­spiro­[indoline-3,4′(1′H)-quinoline]-3′-carbo­nitrile di­methyl­formamide solvate dihydrate

aDepartment of Chemistry, Xuzhou Medical College, Xuzhou 221002, People's Republic of China
*Correspondence e-mail: songleizhu@126.com

(Received 13 February 2009; accepted 23 March 2009; online 28 March 2009)

In the mol­ecule of the title compound, C26H23ClN4O2·C3H7NO·2H2O, the indole and dihydro­pyridine rings are planar and make a dihedral angle of 89.86 (7)°. The dihydro­pyridine ring forms a dihedral angle of 79.95 (7)° with the attached benzene ring. In the crystal structure, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules. Intermolecular C—H⋯N and C—H⋯Cl interactions are also present.

Related literature

For the indole nucleus, see: da Silva et al. (2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]). For the anti­bacterial and fungicidal activities of indole compounds, see: Joshi & Chand (1982[Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.]). For spiro­oxindole ring systems in alkaloids, see: Abdel-Rahman et al. (2004[Abdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem. 12, 2483-2488.]). For the preparation of heterocyclic compounds involving indole derivatives, see: Zhu et al. (2007[Zhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365-9372.]).

[Scheme 1]

Experimental

Crystal data
  • C26H23ClN4O2·C3H7NO·2H2O

  • Mr = 568.06

  • Triclinic, [P \overline 1]

  • a = 9.237 (1) Å

  • b = 12.9553 (17) Å

  • c = 14.4554 (11) Å

  • α = 66.162 (11)°

  • β = 71.619 (12)°

  • γ = 84.595 (15)°

  • V = 1500.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.60 × 0.57 × 0.30 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.760, Tmax = 0.950

  • 14714 measured reflections

  • 5445 independent reflections

  • 4310 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.155

  • S = 1.13

  • 5445 reflections

  • 379 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28B⋯N3i 0.96 2.60 3.528 (5) 163
C15—H15⋯Cl1ii 0.93 2.74 3.647 (3) 167
N4—H4D⋯O4iii 0.86 2.23 2.934 (3) 139
N4—H4C⋯O3iv 0.86 2.24 3.071 (3) 162
O5—H5B⋯O3 0.82 (4) 2.03 (4) 2.830 (4) 163 (4)
O5—H5A⋯O1 0.83 (3) 2.017 (16) 2.816 (3) 164 (4)
O4—H4B⋯O2v 0.82 (3) 2.17 (3) 2.974 (3) 167 (4)
O4—H4A⋯O5vi 0.82 (4) 1.99 (4) 2.800 (4) 170 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y-1, z+1; (iii) -x+1, -y+2, -z; (iv) x, y+1, z; (v) x-1, y, z; (vi) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The indole nucleus is the well known heterocyclic compound (da Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids like horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our program devoted to the preparation of heterocyclic compounds involving indole derivatives (Zhu et al., 2007), we have synthesized a series of spirooxindoles via reactions of substituted isatins together with malononitrile and enaminones. We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), the indole ring A (C3/C12/N2/C13-C18) and the dihydropyridine ring B (N1/C1-C5), are planar. The dihedral angle between them is 89.86 (7)°, and the benzene ring C (C21-C26) is oriented at a dihedral angle of 79.95 (7)° with the attached ring B. Ring D (C1/C2/C6-C9) adopts twisted conformation, with C8 deviating the C1/C2/C6/C7 plan by 0.636 (3)Å.

In the crystal structure, intermolecular N-H···O and O-H···O, hydrogen bonds link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For the indole nucleus, see: da Silva et al. (2001). For the antibacterial and fungicidal activities of indole compounds, see: Joshi & Chand (1982). For spirooxindole ring systems in alkaloids, see: Abdel-Rahman et al. (2004). For the preparation of heterocyclic compounds involving indole derivatives, see: Zhu et al. (2007).[Scheme should show solvent molecules]

Experimental top

Compound (I) was prepared by one-pot reaction of 1-methylisatin (2 mmol), malononitrile (2 mmol) and 3-(4-chlorophenylamino) -5,5-dimethylcyclohex-2-enone (2 mmol) in ethanol. After stirring at 343 K for 5 h, the reaction mixture was cooled and washed with small amount of ethanol. The crude product was filtered and single crystals of the title compound were obtained from DMF and water mixture solution by slow evaporation at room temperature (yield; 80%, m.p. > 573 K). Spectroscopic analysis: IR (KBr, n, cm-1): 3463, 3312, 2190, 1716, 1650, 1568, 1491, 1364, 1090, 1018, 915, 753. 1H NMR (400 MHz, DMSO-d6): 7.65 (d, J = 8.4 Hz, 2H, Ar-H), 7.51-7.54 (m, 2H, ArH), 7.23 (t, J = 8.0 Hz, 2H, ArH), 6.93-6.70 (m, 2H, ArH), 5.55 (s, 2H, NH2), 3.13 (s, 3H, NCH3), 2.05-2.17 (m, 2H, CH2), 1.81-1.93 (m, 2H, CH2), 0.89 (s, 3H, CH3), 0.81 (s, 3H, CH3).

Refinement top

H atoms were positioned geometrically, with N-H=0.86Å (for NH) and C-H=0.93Å and 0.97Å for aromatic and methyl H and constrained to ride on their parent atoms with Uiso(H)=xUeq(C,N), where x=1.5 for methyl H and x=1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The solvent DMF and the two water molecules are not shown for clarity.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2'-Amino-1'-(4-chlorophenyl)-1,7',7'-trimethyl-2,5'-dioxo-5',6',7',8'- tetrahydrospiro[indoline-3,4'(1'H)-quinoline]-3'-carbonitrile dimethylformamide solvate dihydrate top
Crystal data top
C26H23ClN4O2·C3H7NO·2(H2O)Z = 2
Mr = 568.06F(000) = 600
Triclinic, P1Dx = 1.257 Mg m3
Hall symbol: -P 1Melting point > 573 K
a = 9.237 (1) ÅMo Kα radiation, λ = 0.71070 Å
b = 12.9553 (17) ÅCell parameters from 5610 reflections
c = 14.4554 (11) Åθ = 3.0–25.3°
α = 66.162 (11)°µ = 0.17 mm1
β = 71.619 (12)°T = 293 K
γ = 84.595 (15)°Block, colorless
V = 1500.5 (3) Å30.60 × 0.57 × 0.30 mm
Data collection top
Rigaku Mercury
diffractometer
5445 independent reflections
Radiation source: fine-focus sealed tube4310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1011
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1515
Tmin = 0.760, Tmax = 0.950l = 1617
14714 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.5335P]
where P = (Fo2 + 2Fc2)/3
5445 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.21 e Å3
4 restraintsΔρmin = 0.31 e Å3
Crystal data top
C26H23ClN4O2·C3H7NO·2(H2O)γ = 84.595 (15)°
Mr = 568.06V = 1500.5 (3) Å3
Triclinic, P1Z = 2
a = 9.237 (1) ÅMo Kα radiation
b = 12.9553 (17) ŵ = 0.17 mm1
c = 14.4554 (11) ÅT = 293 K
α = 66.162 (11)°0.60 × 0.57 × 0.30 mm
β = 71.619 (12)°
Data collection top
Rigaku Mercury
diffractometer
5445 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
4310 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.950Rint = 0.028
14714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0664 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.21 e Å3
5445 reflectionsΔρmin = 0.31 e Å3
379 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.98120 (12)1.26623 (8)0.42483 (7)0.1045 (4)
O10.7477 (2)0.47841 (13)0.12855 (14)0.0562 (5)
O20.9204 (2)0.60921 (17)0.22240 (15)0.0609 (5)
O30.5785 (4)0.07513 (19)0.2612 (2)0.1004 (9)
O40.1363 (4)0.7917 (2)0.0471 (2)0.0956 (8)
H4A0.148 (5)0.772 (4)0.002 (2)0.115*
H4B0.076 (4)0.747 (3)0.101 (2)0.115*
O50.7925 (3)0.2586 (2)0.1329 (2)0.0918 (8)
H5A0.781 (5)0.317 (2)0.144 (3)0.110*
H5B0.721 (3)0.214 (3)0.176 (3)0.110*
N10.7639 (2)0.87742 (14)0.01571 (14)0.0364 (4)
N20.6913 (3)0.51570 (16)0.33166 (15)0.0490 (5)
N30.5786 (3)0.79554 (19)0.35627 (18)0.0595 (6)
N40.7018 (2)0.98819 (15)0.08330 (15)0.0436 (5)
H4C0.66810.99670.14240.052*
H4D0.72711.04640.02420.052*
N50.3930 (5)0.0797 (3)0.4056 (3)0.1189 (14)
C10.7780 (2)0.77324 (18)0.02435 (17)0.0351 (5)
C20.7457 (2)0.67493 (18)0.06225 (17)0.0357 (5)
C30.6836 (2)0.66875 (18)0.17425 (17)0.0361 (5)
C40.6775 (2)0.78666 (18)0.17317 (17)0.0348 (5)
C50.7150 (2)0.88302 (17)0.08337 (17)0.0336 (5)
C60.7733 (3)0.5680 (2)0.04972 (19)0.0422 (6)
C70.8399 (3)0.5698 (2)0.0597 (2)0.0521 (7)
H7A0.80780.50070.06000.063*
H7B0.95040.57110.07770.063*
C80.7935 (3)0.6698 (2)0.1438 (2)0.0499 (6)
C90.8308 (3)0.7769 (2)0.13491 (18)0.0457 (6)
H9A0.94050.79120.16300.055*
H9B0.78450.83990.17900.055*
C100.6231 (4)0.6592 (3)0.1279 (3)0.0723 (9)
H10A0.60320.59370.13800.108*
H10B0.59320.72540.17850.108*
H10C0.56590.65190.05730.108*
C110.8872 (4)0.6759 (3)0.2544 (2)0.0767 (10)
H11A0.99380.68310.26360.115*
H11B0.85850.74020.30740.115*
H11C0.86780.60830.26140.115*
C120.7833 (3)0.5956 (2)0.24294 (19)0.0439 (6)
C130.5405 (3)0.52001 (19)0.32746 (19)0.0457 (6)
C140.4138 (4)0.4527 (2)0.4012 (2)0.0673 (9)
H140.41990.39400.46360.081*
C150.2771 (4)0.4775 (3)0.3771 (3)0.0768 (10)
H150.19000.43390.42500.092*
C160.2652 (3)0.5628 (3)0.2865 (3)0.0700 (9)
H160.17140.57670.27350.084*
C170.3932 (3)0.6290 (2)0.2137 (2)0.0506 (6)
H170.38660.68740.15120.061*
C180.5295 (3)0.60722 (18)0.23519 (18)0.0387 (5)
C190.7487 (4)0.4264 (3)0.4093 (2)0.0743 (9)
H19A0.75410.35870.39670.111*
H19B0.68140.41310.47920.111*
H19C0.84870.44820.40350.111*
C200.6241 (3)0.79382 (19)0.27326 (19)0.0413 (6)
C210.8148 (2)0.97855 (18)0.11100 (17)0.0350 (5)
C220.7118 (3)1.04436 (19)0.15805 (19)0.0432 (6)
H220.60771.02770.12540.052*
C230.7629 (3)1.1353 (2)0.2540 (2)0.0523 (7)
H230.69391.18080.28630.063*
C240.9163 (3)1.1575 (2)0.3009 (2)0.0554 (7)
C251.0204 (3)1.0947 (2)0.2537 (2)0.0598 (7)
H251.12431.11270.28600.072*
C260.9691 (3)1.0041 (2)0.1572 (2)0.0492 (6)
H261.03820.96070.12370.059*
C270.4592 (6)0.0402 (3)0.3331 (3)0.0904 (12)
H270.41010.02140.33660.108*
C280.4561 (9)0.1747 (5)0.4057 (5)0.187 (3)
H28A0.56490.17800.37460.280*
H28B0.43220.16860.47740.280*
H28C0.41410.24200.36520.280*
C290.2537 (8)0.0312 (7)0.4884 (5)0.205 (4)
H29A0.21980.03180.48060.307*
H29B0.17710.08690.48390.307*
H29C0.27100.00600.55620.307*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1137 (8)0.0718 (6)0.0595 (5)0.0027 (5)0.0020 (5)0.0216 (4)
O10.0800 (13)0.0305 (9)0.0487 (11)0.0064 (8)0.0133 (9)0.0120 (8)
O20.0489 (11)0.0686 (13)0.0630 (12)0.0095 (9)0.0250 (9)0.0194 (10)
O30.158 (3)0.0573 (14)0.0778 (18)0.0061 (15)0.0191 (18)0.0296 (13)
O40.133 (2)0.0648 (15)0.0736 (18)0.0345 (14)0.0062 (16)0.0228 (13)
O50.0887 (18)0.0642 (16)0.126 (2)0.0034 (13)0.0146 (15)0.0546 (16)
N10.0479 (11)0.0275 (10)0.0295 (10)0.0011 (8)0.0091 (8)0.0086 (8)
N20.0682 (14)0.0371 (11)0.0335 (11)0.0104 (10)0.0172 (10)0.0063 (9)
N30.0835 (17)0.0514 (14)0.0413 (13)0.0010 (11)0.0124 (12)0.0209 (11)
N40.0590 (13)0.0328 (10)0.0358 (11)0.0035 (9)0.0092 (9)0.0131 (9)
N50.197 (4)0.101 (3)0.075 (2)0.080 (3)0.058 (3)0.055 (2)
C10.0369 (12)0.0329 (12)0.0343 (12)0.0008 (9)0.0100 (10)0.0128 (10)
C20.0401 (12)0.0329 (12)0.0333 (12)0.0023 (9)0.0107 (10)0.0127 (10)
C30.0401 (12)0.0314 (12)0.0331 (12)0.0001 (9)0.0092 (10)0.0104 (10)
C40.0401 (12)0.0315 (12)0.0311 (12)0.0018 (9)0.0082 (9)0.0121 (10)
C50.0344 (12)0.0301 (11)0.0365 (12)0.0005 (9)0.0108 (9)0.0129 (10)
C60.0507 (14)0.0343 (13)0.0415 (14)0.0059 (10)0.0147 (11)0.0153 (11)
C70.0681 (17)0.0425 (14)0.0511 (16)0.0109 (12)0.0194 (13)0.0248 (12)
C80.0699 (18)0.0439 (14)0.0421 (14)0.0063 (12)0.0200 (13)0.0217 (12)
C90.0588 (15)0.0411 (14)0.0347 (13)0.0019 (11)0.0113 (11)0.0147 (11)
C100.081 (2)0.070 (2)0.080 (2)0.0025 (16)0.0420 (18)0.0305 (17)
C110.125 (3)0.0619 (19)0.0506 (18)0.0082 (18)0.0236 (18)0.0325 (16)
C120.0545 (16)0.0385 (13)0.0375 (13)0.0091 (11)0.0159 (11)0.0141 (11)
C130.0562 (16)0.0327 (13)0.0417 (14)0.0007 (11)0.0042 (12)0.0159 (11)
C140.094 (2)0.0401 (15)0.0464 (17)0.0152 (15)0.0039 (16)0.0107 (13)
C150.062 (2)0.069 (2)0.085 (2)0.0284 (17)0.0098 (18)0.034 (2)
C160.0542 (18)0.068 (2)0.092 (3)0.0113 (15)0.0084 (16)0.043 (2)
C170.0484 (15)0.0431 (14)0.0641 (17)0.0001 (11)0.0155 (13)0.0258 (13)
C180.0437 (13)0.0307 (12)0.0382 (13)0.0026 (10)0.0060 (10)0.0143 (10)
C190.109 (3)0.0574 (18)0.0457 (17)0.0280 (17)0.0305 (17)0.0095 (14)
C200.0504 (14)0.0316 (12)0.0392 (14)0.0024 (10)0.0120 (11)0.0116 (10)
C210.0405 (13)0.0309 (11)0.0293 (11)0.0043 (9)0.0080 (10)0.0084 (9)
C220.0387 (13)0.0386 (13)0.0454 (14)0.0048 (10)0.0097 (11)0.0130 (11)
C230.0582 (17)0.0428 (14)0.0461 (15)0.0105 (12)0.0186 (13)0.0079 (12)
C240.0668 (18)0.0381 (14)0.0413 (15)0.0031 (12)0.0086 (13)0.0008 (11)
C250.0456 (15)0.0581 (17)0.0542 (17)0.0143 (13)0.0035 (13)0.0062 (14)
C260.0444 (14)0.0496 (15)0.0467 (15)0.0026 (11)0.0168 (12)0.0091 (12)
C270.144 (4)0.067 (2)0.070 (2)0.030 (2)0.039 (2)0.038 (2)
C280.386 (11)0.122 (4)0.147 (5)0.106 (6)0.168 (6)0.102 (4)
C290.208 (7)0.245 (8)0.109 (4)0.123 (6)0.015 (5)0.068 (5)
Geometric parameters (Å, º) top
Cl1—C241.730 (3)C9—H9B0.9700
O1—C61.230 (3)C10—H10A0.9600
O2—C121.219 (3)C10—H10B0.9600
O3—C271.221 (5)C10—H10C0.9600
O4—H4A0.82 (4)C11—H11A0.9600
O4—H4B0.82 (3)C11—H11B0.9600
O5—H5A0.83 (3)C11—H11C0.9600
O5—H5B0.82 (4)C13—C181.383 (3)
N1—C51.389 (3)C13—C141.386 (4)
N1—C11.395 (3)C14—C151.389 (5)
N1—C211.444 (3)C14—H140.9300
N2—C121.357 (3)C15—C161.358 (5)
N2—C131.408 (3)C15—H150.9300
N2—C191.445 (3)C16—C171.385 (4)
N3—C201.148 (3)C16—H160.9300
N4—C51.356 (3)C17—C181.368 (3)
N4—H4C0.8600C17—H170.9300
N4—H4D0.8600C19—H19A0.9600
N5—C271.306 (4)C19—H19B0.9600
N5—C281.410 (7)C19—H19C0.9600
N5—C291.434 (7)C21—C221.372 (3)
C1—C21.351 (3)C21—C261.377 (3)
C1—C91.499 (3)C22—C231.381 (3)
C2—C61.458 (3)C22—H220.9300
C2—C31.508 (3)C23—C241.365 (4)
C3—C181.514 (3)C23—H230.9300
C3—C41.517 (3)C24—C251.367 (4)
C3—C121.544 (3)C25—C261.384 (4)
C4—C51.361 (3)C25—H250.9300
C4—C201.412 (3)C26—H260.9300
C6—C71.497 (3)C27—H270.9300
C7—C81.514 (4)C28—H28A0.9600
C7—H7A0.9700C28—H28B0.9600
C7—H7B0.9700C28—H28C0.9600
C8—C91.524 (3)C29—H29A0.9600
C8—C101.528 (4)C29—H29B0.9600
C8—C111.533 (4)C29—H29C0.9600
C9—H9A0.9700
H4A—O4—H4B110 (4)H11A—C11—H11C109.5
H5A—O5—H5B108 (4)H11B—C11—H11C109.5
C5—N1—C1120.56 (17)O2—C12—N2125.9 (2)
C5—N1—C21120.44 (17)O2—C12—C3125.8 (2)
C1—N1—C21118.74 (18)N2—C12—C3108.3 (2)
C12—N2—C13111.0 (2)C18—C13—C14121.1 (3)
C12—N2—C19123.1 (2)C18—C13—N2110.0 (2)
C13—N2—C19125.0 (2)C14—C13—N2128.9 (3)
C5—N4—H4C120.0C13—C14—C15116.5 (3)
C5—N4—H4D120.0C13—C14—H14121.7
H4C—N4—H4D120.0C15—C14—H14121.7
C27—N5—C28120.9 (5)C16—C15—C14122.9 (3)
C27—N5—C29123.0 (5)C16—C15—H15118.6
C28—N5—C29116.1 (5)C14—C15—H15118.6
C2—C1—N1121.7 (2)C15—C16—C17119.8 (3)
C2—C1—C9122.1 (2)C15—C16—H16120.1
N1—C1—C9116.17 (19)C17—C16—H16120.1
C1—C2—C6119.9 (2)C18—C17—C16118.9 (3)
C1—C2—C3123.27 (19)C18—C17—H17120.6
C6—C2—C3116.87 (19)C16—C17—H17120.6
C2—C3—C18113.90 (18)C17—C18—C13120.9 (2)
C2—C3—C4109.84 (17)C17—C18—C3130.3 (2)
C18—C3—C4110.71 (17)C13—C18—C3108.7 (2)
C2—C3—C12111.04 (18)N2—C19—H19A109.5
C18—C3—C12101.58 (18)N2—C19—H19B109.5
C4—C3—C12109.47 (18)H19A—C19—H19B109.5
C5—C4—C20119.5 (2)N2—C19—H19C109.5
C5—C4—C3124.29 (19)H19A—C19—H19C109.5
C20—C4—C3116.16 (18)H19B—C19—H19C109.5
N4—C5—C4123.7 (2)N3—C20—C4177.4 (2)
N4—C5—N1116.05 (19)C22—C21—C26120.6 (2)
C4—C5—N1120.16 (19)C22—C21—N1120.5 (2)
O1—C6—C2120.0 (2)C26—C21—N1118.8 (2)
O1—C6—C7121.1 (2)C21—C22—C23119.9 (2)
C2—C6—C7118.9 (2)C21—C22—H22120.1
C6—C7—C8113.4 (2)C23—C22—H22120.1
C6—C7—H7A108.9C24—C23—C22119.0 (2)
C8—C7—H7A108.9C24—C23—H23120.5
C6—C7—H7B108.9C22—C23—H23120.5
C8—C7—H7B108.9C23—C24—C25121.9 (2)
H7A—C7—H7B107.7C23—C24—Cl1119.1 (2)
C7—C8—C9108.1 (2)C25—C24—Cl1119.0 (2)
C7—C8—C10110.0 (2)C24—C25—C26119.1 (2)
C9—C8—C10110.9 (2)C24—C25—H25120.5
C7—C8—C11109.8 (2)C26—C25—H25120.5
C9—C8—C11107.8 (2)C21—C26—C25119.5 (2)
C10—C8—C11110.2 (2)C21—C26—H26120.3
C1—C9—C8114.7 (2)C25—C26—H26120.3
C1—C9—H9A108.6O3—C27—N5127.2 (4)
C8—C9—H9A108.6O3—C27—H27116.4
C1—C9—H9B108.6N5—C27—H27116.4
C8—C9—H9B108.6N5—C28—H28A109.5
H9A—C9—H9B107.6N5—C28—H28B109.5
C8—C10—H10A109.5H28A—C28—H28B109.5
C8—C10—H10B109.5N5—C28—H28C109.5
H10A—C10—H10B109.5H28A—C28—H28C109.5
C8—C10—H10C109.5H28B—C28—H28C109.5
H10A—C10—H10C109.5N5—C29—H29A109.5
H10B—C10—H10C109.5N5—C29—H29B109.5
C8—C11—H11A109.5H29A—C29—H29B109.5
C8—C11—H11B109.5N5—C29—H29C109.5
H11A—C11—H11B109.5H29A—C29—H29C109.5
C8—C11—H11C109.5H29B—C29—H29C109.5
C5—N1—C1—C20.3 (3)C2—C3—C12—O254.8 (3)
C21—N1—C1—C2173.8 (2)C18—C3—C12—O2176.3 (2)
C5—N1—C1—C9179.7 (2)C4—C3—C12—O266.6 (3)
C21—N1—C1—C96.2 (3)C2—C3—C12—N2127.1 (2)
N1—C1—C2—C6175.3 (2)C18—C3—C12—N25.6 (2)
C9—C1—C2—C64.8 (3)C4—C3—C12—N2111.5 (2)
N1—C1—C2—C33.7 (3)C12—N2—C13—C181.9 (3)
C9—C1—C2—C3176.2 (2)C19—N2—C13—C18171.3 (2)
C1—C2—C3—C18119.9 (2)C12—N2—C13—C14179.3 (2)
C6—C2—C3—C1861.1 (3)C19—N2—C13—C1410.0 (4)
C1—C2—C3—C44.9 (3)C18—C13—C14—C150.2 (4)
C6—C2—C3—C4174.08 (19)N2—C13—C14—C15178.8 (3)
C1—C2—C3—C12126.2 (2)C13—C14—C15—C160.0 (5)
C6—C2—C3—C1252.9 (3)C14—C15—C16—C170.2 (5)
C2—C3—C4—C53.4 (3)C15—C16—C17—C180.4 (4)
C18—C3—C4—C5123.3 (2)C16—C17—C18—C130.6 (4)
C12—C3—C4—C5125.6 (2)C16—C17—C18—C3176.1 (2)
C2—C3—C4—C20178.80 (19)C14—C13—C18—C170.5 (4)
C18—C3—C4—C2054.6 (3)N2—C13—C18—C17179.3 (2)
C12—C3—C4—C2056.6 (3)C14—C13—C18—C3176.9 (2)
C20—C4—C5—N41.2 (3)N2—C13—C18—C32.0 (3)
C3—C4—C5—N4176.5 (2)C2—C3—C18—C1759.0 (3)
C20—C4—C5—N1178.3 (2)C4—C3—C18—C1765.4 (3)
C3—C4—C5—N10.6 (3)C12—C3—C18—C17178.5 (2)
C1—N1—C5—N4178.59 (19)C2—C3—C18—C13123.9 (2)
C21—N1—C5—N47.4 (3)C4—C3—C18—C13111.7 (2)
C1—N1—C5—C41.3 (3)C12—C3—C18—C134.5 (2)
C21—N1—C5—C4175.3 (2)C5—C4—C20—N3163 (6)
C1—C2—C6—O1178.2 (2)C3—C4—C20—N315 (6)
C3—C2—C6—O10.9 (3)C5—N1—C21—C2285.8 (3)
C1—C2—C6—C71.1 (3)C1—N1—C21—C22100.1 (3)
C3—C2—C6—C7178.0 (2)C5—N1—C21—C2698.0 (3)
O1—C6—C7—C8151.3 (2)C1—N1—C21—C2676.1 (3)
C2—C6—C7—C831.7 (3)C26—C21—C22—C231.8 (4)
C6—C7—C8—C953.2 (3)N1—C21—C22—C23174.4 (2)
C6—C7—C8—C1068.0 (3)C21—C22—C23—C240.5 (4)
C6—C7—C8—C11170.5 (2)C22—C23—C24—C252.4 (4)
C2—C1—C9—C820.2 (3)C22—C23—C24—Cl1176.2 (2)
N1—C1—C9—C8159.8 (2)C23—C24—C25—C261.9 (4)
C7—C8—C9—C147.8 (3)Cl1—C24—C25—C26176.6 (2)
C10—C8—C9—C172.9 (3)C22—C21—C26—C252.2 (4)
C11—C8—C9—C1166.4 (2)N1—C21—C26—C25174.0 (2)
C13—N2—C12—O2177.0 (2)C24—C25—C26—C210.4 (4)
C19—N2—C12—O27.5 (4)C28—N5—C27—O31.6 (7)
C13—N2—C12—C34.9 (3)C29—N5—C27—O3178.8 (5)
C19—N2—C12—C3174.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28B···N3i0.962.603.528 (5)163
C15—H15···Cl1ii0.932.743.647 (3)167
N4—H4D···O4iii0.862.232.934 (3)139
N4—H4C···O3iv0.862.243.071 (3)162
O5—H5B···O30.82 (4)2.03 (4)2.830 (4)163 (4)
O5—H5A···O10.83 (3)2.02 (2)2.816 (3)164 (4)
O4—H4B···O2v0.82 (3)2.17 (3)2.974 (3)167 (4)
O4—H4A···O5vi0.82 (4)1.99 (4)2.800 (4)170 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z+1; (iii) x+1, y+2, z; (iv) x, y+1, z; (v) x1, y, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H23ClN4O2·C3H7NO·2(H2O)
Mr568.06
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.237 (1), 12.9553 (17), 14.4554 (11)
α, β, γ (°)66.162 (11), 71.619 (12), 84.595 (15)
V3)1500.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.60 × 0.57 × 0.30
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.760, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
14714, 5445, 4310
Rint0.028
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.155, 1.13
No. of reflections5445
No. of parameters379
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.31

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28B···N3i0.962.603.528 (5)163.1
C15—H15···Cl1ii0.932.743.647 (3)166.6
N4—H4D···O4iii0.862.232.934 (3)138.6
N4—H4C···O3iv0.862.243.071 (3)162.0
O5—H5B···O30.82 (4)2.03 (4)2.830 (4)163 (4)
O5—H5A···O10.83 (3)2.017 (16)2.816 (3)164 (4)
O4—H4B···O2v0.82 (3)2.17 (3)2.974 (3)167 (4)
O4—H4A···O5vi0.82 (4)1.99 (4)2.800 (4)170 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z+1; (iii) x+1, y+2, z; (iv) x, y+1, z; (v) x1, y, z; (vi) x+1, y+1, z.
 

Acknowledgements

The authors are deeply indebted to Professor S. J. Ji for his invaluable help. This work was partially supported by the Special Foundation of the President of Xuzhou Medical College and by a grant from the Chemistry and Biochemistry Experimental Center of Xuzhou Medical College.

References

First citationAbdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem. 12, 2483–2488.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJoshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12.  CAS PubMed Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationZhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365–9372.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds