organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl (1-hydr­­oxy-1-phenyl­ethyl)phospho­nate

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, Faculty of Science, University of Ankara, Ankara, Turkey, and cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 4 March 2009; accepted 27 March 2009; online 31 March 2009)

The title compound, C12H19O4P, has a distorted tetra­hedral geometry around the P atom. The molecules form dimers with R22(10) ring motifs due to inter­molecular O—H⋯O hydrogen bonds. The double-bonded O atom of the phospho­nate group behaves as an acceptor and the hydr­oxy group acts as a donor. Both of the ethyl groups are disordered with occupancies of 0.55:0.45 and 0.725:0.275.

Related literature

For phospho­nate compounds, see: Acar et al. (2009[Acar, N., Tahir, M. N., Yılmaz, H., Chishti, M. S. A. & Malik, M. A. (2009). Acta Cryst. E65, o481.]); Tahir et al. (2007[Tahir, M. N., Acar, N., Yilmaz, H., Danish, M. & Ülkü, D. (2007). Acta Cryst. E63, o3817-o3818.], 2009[Tahir, M. N., Acar, N., Yilmaz, H., Tariq, M. I. & Ülkü, D. (2009). Acta Cryst. E65, o562.]). For related structures, see: deMendonca et al. (1996[deMendonca, D. J., Hammond, G. B., Golen, J. A. & Williard, P. G. (1996). Z. Kristallogr. 211, 833-834.]); Feng et al. (2007[Feng, D., Chen, R., Huang, Y. & Song, H. (2007). Heteroat. Chem. 18, 347-353.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 155-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H19O4P

  • Mr = 258.24

  • Monoclinic, C 2/c

  • a = 20.1187 (12) Å

  • b = 8.4488 (14) Å

  • c = 18.4833 (12) Å

  • β = 116.991 (4)°

  • V = 2799.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (MolEN; Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.949, Tmax = 0.969

  • 2753 measured reflections

  • 2664 independent reflections

  • 1726 reflections with I > 2σ(I)

  • Rint = 0.011

  • 3 standard reflections frequency: 120 min intensity decay: −1.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.197

  • S = 1.02

  • 2664 reflections

  • 162 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

P1—O2 1.461 (3)
P1—O3 1.555 (3)
P1—O4 1.551 (3)
P1—C7 1.828 (3)
O1—C7 1.420 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.8200 1.9100 2.709 (4) 163.00
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In continuation to the study of phosphonate compounds (Acar et al., 2009; Tahir et al., 2007, 2009), we, herein report the preparation and crystal structure of the title compound (I), (Fig. 1.).

The crystal structures of (II) Diethyl 1-hydroxy-1-(pyridin-2-yl)ethyl phosphonate (Feng et al., 2007) and (III) Diethyl (1-hydroxy-1-methyl-3-phenyl- 2-propynyl)phosphonate (deMendonca et al., 1996) has been reported, previously. The title compound (I) has distorted tetrahedral geometry around phosphorus atom (Table 1.) and differs from (II) as pyridin ring has been replaced by the phenyl ring. It is also dimerized (Fig. 2.) forming ring motifs R22(10) (Bernstein et al., 1995) due to intermolecular H-bonding of O–H···O type (Table 2.). Both of the ethyl groups are disordered having occupancy ratios of 0.55:0.45 and 0.725:0.275, respectively. There does not exist any kind of π-interaction.

Related literature top

For phosphonate compounds, see: Acar et al. (2009); Tahir et al. (2007, 2009). For related structures, see:deMendonca et al. (1996); Feng et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Refinement top

H-atoms were positioned geometrically, with O-H = 0.82 Å for hydroxy, C-H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and ethylene moieties and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms. The higher values of the refinement parameters and the thermal elipsoids indicated the disorder of ethyl groups. The disorder was resolved using DFIX and EADP commands.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1993); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1993); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2005).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Ethyl groups having higher occupancy ratios are selected.
[Figure 2] Fig. 2. The figure (PLATON: Spek, 2009) which shows the formation of dimers through hydrogen bonding forming R22(10) motifs. Ethyl groups having higher occupancy ratios are selected.
Diethyl (1-hydroxy-1-phenylethyl)phosphonate top
Crystal data top
C12H19O4PF(000) = 1104
Mr = 258.24Dx = 1.225 Mg m3
Monoclinic, C2/cMelting point: 383 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 20.1187 (12) ÅCell parameters from 25 reflections
b = 8.4488 (14) Åθ = 10.2–18.1°
c = 18.4833 (12) ŵ = 0.20 mm1
β = 116.991 (4)°T = 296 K
V = 2799.6 (5) Å3Prismatic, colorless
Z = 80.28 × 0.22 × 0.18 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.011
ω/2θ scansθmax = 25.7°, θmin = 2.5°
Absorption correction: ψ scan
(MolEN; Fair, 1990)
h = 2124
Tmin = 0.949, Tmax = 0.969k = 100
2753 measured reflectionsl = 220
2664 independent reflections3 standard reflections every 120 min
1726 reflections with I > 2σ(I) intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.1174P)2 + 1.8226P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2664 reflectionsΔρmax = 0.42 e Å3
162 parametersΔρmin = 0.41 e Å3
6 restraints
Crystal data top
C12H19O4PV = 2799.6 (5) Å3
Mr = 258.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.1187 (12) ŵ = 0.20 mm1
b = 8.4488 (14) ÅT = 296 K
c = 18.4833 (12) Å0.28 × 0.22 × 0.18 mm
β = 116.991 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1726 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MolEN; Fair, 1990)
Rint = 0.011
Tmin = 0.949, Tmax = 0.9693 standard reflections every 120 min
2753 measured reflections intensity decay: 1.2%
2664 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0596 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
2664 reflectionsΔρmin = 0.41 e Å3
162 parameters
Special details top

Experimental. The structure was solved by Patterson method using SHELX86. The whole molecule was recognized.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.16206 (5)0.43490 (11)0.02880 (5)0.0706 (3)
O10.20371 (14)0.1469 (3)0.07797 (16)0.0810 (9)
O20.19607 (15)0.4445 (3)0.02609 (15)0.0956 (11)
O30.1602 (2)0.5940 (3)0.07017 (18)0.1071 (13)
O40.07969 (14)0.3787 (4)0.01170 (14)0.1054 (12)
C10.17069 (15)0.2904 (3)0.16722 (16)0.0604 (9)
C20.1870 (2)0.3950 (5)0.23087 (19)0.0814 (11)
C30.1507 (2)0.3836 (6)0.2789 (2)0.0939 (15)
C40.0982 (2)0.2709 (5)0.2640 (2)0.0892 (15)
C50.0807 (2)0.1687 (5)0.2010 (2)0.0857 (14)
C60.11694 (18)0.1776 (4)0.1532 (2)0.0728 (11)
C70.20991 (16)0.2986 (3)0.11360 (18)0.0642 (10)
C80.29101 (18)0.3474 (5)0.1597 (2)0.0886 (14)
C9A0.1700 (12)0.7452 (17)0.0422 (8)0.108 (2)0.550
C10A0.0980 (6)0.8190 (12)0.0106 (7)0.108 (2)0.550
C11A0.0250 (5)0.4095 (9)0.0930 (4)0.127 (2)0.725
C12A0.0046 (4)0.2635 (9)0.1369 (4)0.127 (2)0.725
C12B0.0142 (11)0.364 (3)0.1501 (12)0.127 (2)0.275
C9B0.1764 (16)0.753 (2)0.0580 (10)0.108 (2)0.450
C10B0.1267 (7)0.8175 (15)0.0212 (8)0.108 (2)0.450
C11B0.0478 (10)0.285 (3)0.0825 (10)0.127 (2)0.275
H20.222650.473500.241410.0978*
H30.162500.453930.321720.1125*
H40.074220.263330.296690.1071*
H10.234420.138940.060470.0971*
H8C0.316740.275610.203970.1151*
H9A0.198920.733460.012510.1301*0.550
H9B0.197600.813350.088500.1301*0.550
H10A0.073970.760330.060320.1410*0.550
H10B0.106080.925960.022290.1410*0.550
H10C0.066930.819050.016370.1410*0.550
H11A0.047190.471100.120640.1519*0.725
H11B0.015360.471120.092110.1519*0.725
H12A0.025370.283170.194140.1646*0.725
H12B0.042850.223710.124240.1646*0.725
H12C0.034710.186900.121310.1646*0.725
H50.043990.092450.190030.1028*
H60.104840.106080.110790.0872*
H8A0.294010.452760.180450.1151*
H8B0.313670.344900.123830.1151*
H9C0.227180.758260.064950.1301*0.450
H9D0.173780.819670.099450.1301*0.450
H10D0.075900.797760.032400.1410*0.450
H10E0.136590.767530.061910.1410*0.450
H10F0.134620.929430.021490.1410*0.450
H11C0.030100.186970.070320.1519*0.275
H11D0.085970.259450.098890.1519*0.275
H12D0.004590.366320.196390.1646*0.275
H12E0.019320.469680.134690.1646*0.275
H12F0.059480.306030.163500.1646*0.276
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0724 (5)0.0812 (6)0.0660 (5)0.0143 (4)0.0382 (4)0.0060 (4)
O10.0893 (16)0.0692 (14)0.1046 (17)0.0017 (12)0.0616 (14)0.0126 (13)
O20.1085 (19)0.109 (2)0.0973 (17)0.0255 (15)0.0711 (16)0.0183 (15)
O30.170 (3)0.0692 (16)0.1128 (19)0.0340 (16)0.091 (2)0.0190 (14)
O40.0682 (15)0.174 (3)0.0634 (13)0.0083 (16)0.0207 (11)0.0125 (16)
C10.0563 (15)0.0638 (18)0.0544 (14)0.0051 (13)0.0193 (12)0.0006 (13)
C20.080 (2)0.088 (2)0.0687 (19)0.0086 (18)0.0271 (17)0.0128 (17)
C30.101 (3)0.119 (3)0.0617 (19)0.001 (2)0.0370 (19)0.020 (2)
C40.093 (3)0.117 (3)0.0685 (19)0.005 (2)0.0463 (19)0.006 (2)
C50.082 (2)0.093 (3)0.091 (2)0.0069 (19)0.047 (2)0.004 (2)
C60.074 (2)0.074 (2)0.0723 (18)0.0027 (16)0.0350 (16)0.0083 (16)
C70.0605 (16)0.0632 (18)0.0701 (17)0.0023 (14)0.0308 (14)0.0045 (15)
C80.0603 (19)0.098 (3)0.098 (2)0.0004 (18)0.0275 (18)0.001 (2)
C9A0.114 (4)0.088 (2)0.117 (4)0.001 (2)0.048 (3)0.003 (2)
C10A0.114 (4)0.088 (2)0.117 (4)0.001 (2)0.048 (3)0.003 (2)
C11A0.118 (4)0.119 (4)0.105 (3)0.008 (3)0.017 (3)0.009 (3)
C12A0.118 (4)0.119 (4)0.105 (3)0.008 (3)0.017 (3)0.009 (3)
C12B0.118 (4)0.119 (4)0.105 (3)0.008 (3)0.017 (3)0.009 (3)
C9B0.114 (4)0.088 (2)0.117 (4)0.001 (2)0.048 (3)0.003 (2)
C10B0.114 (4)0.088 (2)0.117 (4)0.001 (2)0.048 (3)0.003 (2)
C11B0.118 (4)0.119 (4)0.105 (3)0.008 (3)0.017 (3)0.009 (3)
Geometric parameters (Å, º) top
P1—O21.461 (3)C5—H50.9300
P1—O31.555 (3)C6—H60.9300
P1—O41.551 (3)C8—H8A0.9600
P1—C71.828 (3)C8—H8B0.9600
O1—C71.420 (4)C8—H8C0.9600
O3—C9A1.425 (16)C9A—H9A0.9700
O3—C9B1.424 (19)C9A—H9B0.9700
O4—C11A1.427 (7)C9B—H9C0.9700
O4—C11B1.41 (2)C9B—H9D0.9700
O1—H10.8200C10A—H10A0.9600
C1—C21.387 (4)C10A—H10C0.9600
C1—C61.375 (5)C10A—H10B0.9600
C1—C71.523 (5)C10B—H10E0.9600
C2—C31.385 (6)C10B—H10D0.9600
C3—C41.354 (6)C10B—H10F0.9600
C4—C51.361 (5)C11A—H11A0.9700
C5—C61.379 (6)C11A—H11B0.9700
C7—C81.515 (5)C11B—H11C0.9700
C9A—C10A1.47 (2)C11B—H11D0.9700
C9B—C10B1.45 (2)C12A—H12A0.9600
C11A—C12A1.448 (11)C12A—H12B0.9600
C11B—C12B1.47 (3)C12A—H12C0.9600
C2—H20.9300C12B—H12D0.9600
C3—H30.9300C12B—H12E0.9600
C4—H40.9300
P1···H10E3.1900C8···H22.6800
O1···O23.127 (4)C12B···H12Dix3.0300
O1···O43.009 (4)H1···O2ii1.9100
O1···C9Bi3.366 (17)H1···H10Fi2.5900
O1···O2ii2.709 (4)H1···H8B2.2900
O1···C11B3.399 (19)H2···C82.6800
O1···C10Bi3.306 (13)H2···H8A2.2000
O2···O1ii2.709 (4)H3···O2viii2.7200
O2···O13.127 (4)H4···H10Eviii2.3400
O3···C23.238 (5)H6···O12.3500
O4···C63.266 (4)H8A···C22.7500
O4···O13.009 (4)H8A···O32.8000
O1···H10Fi2.5200H8A···C5vii3.0800
O1···H9Bi2.8300H8A···H22.2000
O1···H10Bi2.7300H8B···O22.8300
O1···H9Di2.8900H8B···H11Dii2.4300
O1···H62.3500H8B···H12.2900
O2···H9A2.5400H8C···C23.0400
O2···H3iii2.7200H9A···H9Ax2.3200
O2···H1ii1.9100H9A···O22.5400
O2···H8B2.8300H9B···O1vi2.8300
O2···H11A2.7100H9B···C3vii2.9800
O2···H11D2.5400H9C···C3vii3.0100
O3···H8A2.8000H9D···O1vi2.8900
C2···O33.238 (5)H10A···C5iv3.0800
C3···C12Biv3.44 (2)H10B···O1vi2.7300
C3···C9Bv3.59 (2)H10B···H11Cvi2.6000
C6···O43.266 (4)H10C···H11Civ2.5600
C9B···O1vi3.366 (17)H10E···C4iii2.9700
C9B···C3vii3.59 (2)H10E···P13.1900
C10B···O1vi3.306 (13)H10E···H4iii2.3400
C11B···O13.399 (19)H10F···H1vi2.5900
C12B···C3iv3.44 (2)H10F···O1vi2.5200
C2···H8A2.7500H11A···O22.7100
C2···H8C3.0400H11C···H10Bi2.6000
C3···H12Eiv3.0400H11C···H10Civ2.5600
C3···H9Bv2.9800H11D···O22.5400
C3···H9Cv3.0100H11D···H8Bii2.4300
C4···H12Eiv3.1000H12D···C12Bix3.0300
C4···H10Eviii2.9700H12D···H12Dix2.0700
C5···H10Aiv3.0800H12E···C3iv3.0400
C5···H8Av3.0800H12E···C4iv3.1000
O2—P1—O3114.63 (18)H8A—C8—H8C109.00
O2—P1—O4114.61 (15)H8B—C8—H8C109.00
O2—P1—C7113.59 (16)O3—C9A—H9A109.00
O3—P1—O4104.1 (2)O3—C9A—H9B109.00
O3—P1—C7104.11 (14)C10A—C9A—H9A109.00
O4—P1—C7104.63 (16)C10A—C9A—H9B109.00
P1—O3—C9A123.9 (7)H9A—C9A—H9B108.00
P1—O3—C9B132.8 (10)O3—C9B—H9D109.00
P1—O4—C11A126.6 (4)C10B—C9B—H9C109.00
P1—O4—C11B123.8 (9)O3—C9B—H9C109.00
C7—O1—H1109.00H9C—C9B—H9D107.00
C2—C1—C7122.0 (3)C10B—C9B—H9D109.00
C6—C1—C7120.3 (3)C9A—C10A—H10B109.00
C2—C1—C6117.7 (3)C9A—C10A—H10A109.00
C1—C2—C3120.6 (4)C9A—C10A—H10C109.00
C2—C3—C4120.5 (4)H10A—C10A—H10B110.00
C3—C4—C5119.7 (4)H10A—C10A—H10C109.00
C4—C5—C6120.4 (4)H10B—C10A—H10C109.00
C1—C6—C5121.1 (3)C9B—C10B—H10E109.00
P1—C7—C1111.1 (2)C9B—C10B—H10F110.00
P1—C7—C8108.9 (2)C9B—C10B—H10D109.00
P1—C7—O1105.7 (2)H10D—C10B—H10E109.00
O1—C7—C8110.6 (3)H10D—C10B—H10F109.00
C1—C7—C8113.0 (3)H10E—C10B—H10F110.00
O1—C7—C1107.4 (2)O4—C11A—H11A109.00
O3—C9A—C10A111.4 (16)O4—C11A—H11B109.00
O3—C9B—C10B114.3 (16)C12A—C11A—H11A109.00
O4—C11A—C12A111.1 (6)C12A—C11A—H11B109.00
O4—C11B—C12B112.8 (19)H11A—C11A—H11B108.00
C1—C2—H2120.00O4—C11B—H11C109.00
C3—C2—H2120.00C12B—C11B—H11D109.00
C2—C3—H3120.00O4—C11B—H11D109.00
C4—C3—H3120.00C12B—C11B—H11C109.00
C3—C4—H4120.00H11C—C11B—H11D108.00
C5—C4—H4120.00C11A—C12A—H12B109.00
C4—C5—H5120.00C11A—C12A—H12C109.00
C6—C5—H5120.00C11A—C12A—H12A109.00
C1—C6—H6119.00H12A—C12A—H12C110.00
C5—C6—H6119.00H12B—C12A—H12C109.00
C7—C8—H8A109.00H12A—C12A—H12B109.00
C7—C8—H8B109.00C11B—C12B—H12D109.00
C7—C8—H8C110.00C11B—C12B—H12E110.00
H8A—C8—H8B109.00H12D—C12B—H12E110.00
O2—P1—O3—C9A17.3 (11)P1—O4—C11A—C12A121.8 (6)
O4—P1—O3—C9A108.6 (11)C6—C1—C2—C30.9 (5)
C7—P1—O3—C9A142.0 (11)C7—C1—C2—C3179.5 (3)
O2—P1—O4—C11A33.3 (5)C2—C1—C6—C50.2 (5)
O3—P1—O4—C11A92.7 (5)C7—C1—C6—C5179.8 (3)
C7—P1—O4—C11A158.4 (5)C2—C1—C7—P187.5 (3)
O2—P1—C7—O162.4 (3)C2—C1—C7—O1157.5 (3)
O2—P1—C7—C1178.45 (19)C2—C1—C7—C835.3 (4)
O2—P1—C7—C856.5 (3)C6—C1—C7—P192.2 (3)
O3—P1—C7—O1172.3 (3)C6—C1—C7—O122.9 (4)
O3—P1—C7—C156.2 (3)C6—C1—C7—C8145.1 (3)
O3—P1—C7—C868.9 (3)C1—C2—C3—C40.6 (6)
O4—P1—C7—O163.4 (3)C2—C3—C4—C50.4 (6)
O4—P1—C7—C152.8 (2)C3—C4—C5—C61.1 (6)
O4—P1—C7—C8177.8 (2)C4—C5—C6—C10.8 (6)
P1—O3—C9A—C10A95.4 (14)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z1/2; (iv) x, y+1, z; (v) x+1/2, y1/2, z+1/2; (vi) x, y+1, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x, y+1, z+1/2; (ix) x, y, z1/2; (x) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.82001.91002.709 (4)163.00
Symmetry code: (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC12H19O4P
Mr258.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)20.1187 (12), 8.4488 (14), 18.4833 (12)
β (°) 116.991 (4)
V3)2799.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(MolEN; Fair, 1990)
Tmin, Tmax0.949, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
2753, 2664, 1726
Rint0.011
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.197, 1.02
No. of reflections2664
No. of parameters162
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.41

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1993), MolEN (Fair, 1990), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 2005).

Selected bond lengths (Å) top
P1—O21.461 (3)P1—C71.828 (3)
P1—O31.555 (3)O1—C71.420 (4)
P1—O41.551 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82001.91002.709 (4)163.00
Symmetry code: (i) x+1/2, y+1/2, z.
 

References

First citationAcar, N., Tahir, M. N., Yılmaz, H., Chishti, M. S. A. & Malik, M. A. (2009). Acta Cryst. E65, o481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 155-1573.  CrossRef Web of Science Google Scholar
First citationdeMendonca, D. J., Hammond, G. B., Golen, J. A. & Williard, P. G. (1996). Z. Kristallogr. 211, 833–834.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1993). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFeng, D., Chen, R., Huang, Y. & Song, H. (2007). Heteroat. Chem. 18, 347–353.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Acar, N., Yilmaz, H., Danish, M. & Ülkü, D. (2007). Acta Cryst. E63, o3817–o3818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Acar, N., Yilmaz, H., Tariq, M. I. & Ülkü, D. (2009). Acta Cryst. E65, o562.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds