inorganic compounds
The Chevrel phase In4.07Mo15S11.87Se7.13 with mixed chalcogenide occupancy
aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr
The single-crystal of the title compound, indium pentadecamolybdenum nonadeca(sulfide/selenide), was obtained by solid state reaction with an S/Se mixture. It adopts the structure type of In3Mo15Se19 and In3.7Mo15S19, which are non-substituted Chevrel phases in the P63/m. The Mo, one S/Se and two In sites have m.. and two S/Se and one In atoms are in 3.. sites. This compound contains isolated Mo6 and Mo9 clusters. The shapes of clusters are octahedral and confacial bioctahedral, respectively, face-capped by chalcogen atoms over each triangle face. The Mo—X bonds (X = S, Se) play an important role for the constitution of the framework. The Mo—X distances of 2.479 (2)–2.6687 (9) Å are within the ranges of average values of Mo—S and Mo—Se distances. The In atoms located on sites with m.. symmetry are partially occupied.
Related literature
For discussion of the crystal structures of Chevrel phases, see: Grüttner et al. (1979). For applications, see: Suresh et al. (2008); Aurbach et al. (2007). For the syntheses and crystal structures of Chevrel phases with various cations, see: Salloum, Gautier et al. (2004); Salloum, Gougeon et al. (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
10.1107/S1600536809007351/br2099sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007351/br2099Isup2.hkl
The title compound was prepared from powder elemental indium (99.999 at.%), molybdenum (99.999 at.%), sulfur (99.98 at.%), and selenium (99.99 at.%) from Aldrich products in the slightly off-stoichiometric 5:15:12:7 ratio. The reaction mixture was sealed under a nitrogen atmosphere in a silica tube and heated at 1343 K for 72 h and cooled to room temperature at the rate of 10 K/h to obtain black single crystals for X-ray studies.
The
of the title compound was solved and refined starting from the atomic coordinates reported for In~3Mo15Se19 compound (Grüttner et al., 1979). In the first stage of the the positions of all atoms but In3 were obtained reasonably. The remaining In3 atom was located in subsequent difference Fourier syntheses. The maximum and minimum residual electron density peaks were located at 1.07 and 0.46 Å, respectively, from the In1 atom.Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).In4.07Mo15S11.87Se7.13 | Dx = 6.185 Mg m−3 |
Mr = 2847.4 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63/m | Cell parameters from 1691 reflections |
Hall symbol: -P 6c | θ = 2.5–28.3° |
a = 9.5974 (2) Å | µ = 18.17 mm−1 |
c = 19.1668 (5) Å | T = 295 K |
V = 1528.93 (6) Å3 | Block, black |
Z = 2 | 0.04 × 0.04 × 0.03 mm |
F(000) = 2524.1 |
Bruker SMART CCD area-detector diffractometer | 1047 reflections with I > 2σ(I) |
ϕ and ω scans | Rint = 0.048 |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | θmax = 28.3°, θmin = 2.1° |
Tmin = 0.431, Tmax = 0.577 | h = −12→12 |
10366 measured reflections | k = −9→12 |
1309 independent reflections | l = −25→25 |
Refinement on F2 | 77 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0327P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.090 | (Δ/σ)max < 0.001 |
S = 1.41 | Δρmax = 4.14 e Å−3 |
1309 reflections | Δρmin = −4.12 e Å−3 |
In4.07Mo15S11.87Se7.13 | Z = 2 |
Mr = 2847.4 | Mo Kα radiation |
Hexagonal, P63/m | µ = 18.17 mm−1 |
a = 9.5974 (2) Å | T = 295 K |
c = 19.1668 (5) Å | 0.04 × 0.04 × 0.03 mm |
V = 1528.93 (6) Å3 |
Bruker SMART CCD area-detector diffractometer | 1309 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1047 reflections with I > 2σ(I) |
Tmin = 0.431, Tmax = 0.577 | Rint = 0.048 |
10366 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 77 parameters |
wR(F2) = 0.090 | 0 restraints |
S = 1.41 | Δρmax = 4.14 e Å−3 |
1309 reflections | Δρmin = −4.12 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mo1 | 0.16177 (10) | 0.50528 (10) | 0.25 | 0.0084 (2) | |
Mo2 | 0.01379 (7) | 0.16724 (7) | 0.05730 (3) | 0.00754 (18) | |
Mo3 | 0.31869 (7) | 0.50095 (7) | 0.13306 (3) | 0.00801 (18) | |
Se1 | 0 | 0 | 0.15855 (13) | 0.0164 (9) | 0.140 (9) |
S1 | 0 | 0 | 0.15855 (13) | 0.0164 (9) | 0.860 (9) |
Se2 | 0.3333 | 0.6667 | 0.03438 (13) | 0.0137 (9) | 0.142 (9) |
S2 | 0.3333 | 0.6667 | 0.03438 (13) | 0.0137 (9) | 0.858 (9) |
Se3 | 0.31626 (16) | 0.34882 (16) | 0.25 | 0.0139 (5) | 0.658 (8) |
S3 | 0.31626 (16) | 0.34882 (16) | 0.25 | 0.0139 (5) | 0.342 (8) |
Se4 | 0.71167 (14) | 0.03659 (14) | 0.05076 (5) | 0.0122 (4) | 0.437 (6) |
S4 | 0.71167 (14) | 0.03659 (14) | 0.05076 (5) | 0.0122 (4) | 0.563 (6) |
Se5 | 0.01082 (16) | 0.38207 (15) | 0.13790 (6) | 0.0149 (5) | 0.328 (6) |
S5 | 0.01082 (16) | 0.38207 (15) | 0.13790 (6) | 0.0149 (5) | 0.672 (6) |
In1 | 0.6667 | 0.3333 | 0.10758 (9) | 0.0837 (6) | |
In2 | 0.2155 (3) | 0.0510 (3) | 0.25 | 0.0331 (8) | 0.468 (4) |
In3 | 0.5545 (8) | 0.2420 (7) | 0.25 | 0.055 (2) | 0.224 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.0086 (4) | 0.0086 (4) | 0.0080 (4) | 0.0043 (4) | 0 | 0 |
Mo2 | 0.0079 (3) | 0.0083 (3) | 0.0066 (3) | 0.0041 (3) | −0.0002 (2) | −0.0006 (2) |
Mo3 | 0.0083 (3) | 0.0085 (3) | 0.0072 (3) | 0.0042 (3) | −0.0002 (2) | −0.0005 (2) |
Se1 | 0.0198 (11) | 0.0198 (11) | 0.0098 (13) | 0.0099 (6) | 0 | 0 |
S1 | 0.0198 (11) | 0.0198 (11) | 0.0098 (13) | 0.0099 (6) | 0 | 0 |
Se2 | 0.0132 (10) | 0.0132 (10) | 0.0146 (14) | 0.0066 (5) | 0 | 0 |
S2 | 0.0132 (10) | 0.0132 (10) | 0.0146 (14) | 0.0066 (5) | 0 | 0 |
Se3 | 0.0143 (8) | 0.0136 (8) | 0.0129 (7) | 0.0064 (6) | 0 | 0 |
S3 | 0.0143 (8) | 0.0136 (8) | 0.0129 (7) | 0.0064 (6) | 0 | 0 |
Se4 | 0.0108 (6) | 0.0127 (6) | 0.0107 (6) | 0.0041 (5) | 0.0031 (4) | 0.0006 (4) |
S4 | 0.0108 (6) | 0.0127 (6) | 0.0107 (6) | 0.0041 (5) | 0.0031 (4) | 0.0006 (4) |
Se5 | 0.0197 (8) | 0.0110 (7) | 0.0136 (7) | 0.0073 (6) | −0.0028 (5) | −0.0045 (5) |
S5 | 0.0197 (8) | 0.0110 (7) | 0.0136 (7) | 0.0073 (6) | −0.0028 (5) | −0.0045 (5) |
In1 | 0.0967 (10) | 0.0967 (10) | 0.0579 (10) | 0.0483 (5) | 0 | 0 |
In2 | 0.0608 (17) | 0.0434 (14) | 0.0201 (10) | 0.0446 (13) | 0 | 0 |
In3 | 0.072 (4) | 0.043 (4) | 0.060 (4) | 0.037 (3) | 0 | 0 |
Mo1—Mo3 | 2.7123 (7) | Mo3—S3 | 2.6687 (9) |
Mo1—Mo3i | 2.7540 (8) | Mo3—S4vii | 2.6034 (12) |
Mo2—Mo2ii | 2.6728 (11) | Mo3—S5iii | 2.4976 (14) |
Mo3—Mo3iii | 2.6415 (10) | Mo3—S5 | 2.5827 (15) |
Mo1—S3 | 2.5844 (16) | In1—In3 | 2.904 (3) |
Mo1—S3i | 2.5681 (16) | In2—In3 | 2.825 (7) |
Mo1—S5iv | 2.5299 (13) | In2—Mo1viii | 2.862 (2) |
Mo2—S1 | 2.479 (2) | In1—S2ix | 2.721 (3) |
Mo2—S4v | 2.5093 (12) | In2—S1iv | 2.564 (2) |
Mo2—S4vi | 2.5219 (13) | In2—S3 | 2.518 (3) |
Mo2—S4vii | 2.6101 (13) | In2—S5viii | 2.8445 (18) |
Mo2—S5 | 2.5880 (13) | In3—S3 | 2.937 (6) |
Mo3—S2 | 2.430 (2) | In3—S5viii | 3.055 (4) |
Mo2ii—Mo2—Mo2viii | 60.0 | S1—Mo2—Mo2ii | 57.39 (3) |
Mo3iii—Mo3—Mo3i | 60.0 | S4v—Mo2—Mo2ii | 120.33 (3) |
Mo3—Mo1—Mo3iv | 111.46 (4) | S4vi—Mo2—Mo2ii | 60.24 (4) |
Mo3—Mo1—Mo3i | 57.79 (2) | S4vii—Mo2—Mo2ii | 116.94 (3) |
Mo3x—Mo1—Mo3i | 108.95 (4) | S4v—Mo2—Mo2viii | 118.11 (3) |
Mo3—Mo1—Mo3x | 144.30 (4) | S4vi—Mo2—Mo2viii | 120.16 (4) |
S5—Mo1—S5iv | 116.27 (7) | S4vii—Mo2—Mo2viii | 57.01 (3) |
S5—Mo1—S3i | 87.54 (4) | S5—Mo2—Mo2ii | 131.12 (4) |
S5—Mo1—S3 | 95.12 (4) | S5—Mo2—Mo2viii | 136.62 (4) |
S3i—Mo1—S3 | 174.93 (5) | S2—Mo3—S3 | 173.60 (5) |
S5—Mo1—Mo3 | 58.91 (3) | S2—Mo3—S5iii | 91.81 (3) |
S5iv—Mo1—Mo3 | 152.53 (5) | S5iii—Mo3—S5 | 175.03 (5) |
S3i—Mo1—Mo3 | 117.85 (3) | S5iii—Mo3—S3 | 86.03 (4) |
S3—Mo1—Mo3 | 60.45 (2) | S5iii—Mo3—S4vii | 86.33 (4) |
S5—Mo1—Mo3x | 145.74 (5) | S5—Mo3—S4vii | 98.34 (4) |
S5iv—Mo1—Mo3x | 56.23 (3) | S2—Mo3—Mo3iii | 57.07 (3) |
S3i—Mo1—Mo3x | 60.07 (2) | S3iii—Mo3—Mo3 | 116.82 (3) |
S3—Mo1—Mo3x | 118.08 (2) | S3i—Mo3—Mo3 | 119.14 (3) |
S5iv—Mo1—Mo3i | 145.74 (5) | S4vii—Mo3—Mo3i | 136.62 (3) |
S3i—Mo1—Mo3i | 60.07 (2) | S4vii—Mo3—Mo3iii | 130.06 (4) |
S1—Mo2—S4v | 175.41 (5) | S5iii—Mo3—Mo3iii | 60.26 (4) |
S1—Mo2—S4vi | 92.35 (3) | S5iii—Mo3—Mo3i | 120.21 (4) |
S1—Mo2—S4vii | 90.27 (3) | Mo1iii—S3—Mo1 | 65.07 (5) |
S1—Mo2—S5 | 91.73 (5) | Mo1iii—S3—Mo3iv | 63.42 (3) |
S4v—Mo2—S5 | 92.56 (4) | Mo1—S5—Mo3 | 64.07 (4) |
S4vi—Mo2—S5 | 87.58 (4) | Mo2ii—S1—Mo2viii | 65.23 (6) |
S4v—Mo2—S4vii | 87.51 (3) | Mo2xi—S4—Mo2xii | 64.49 (4) |
S4vi—Mo2—S4vii | 173.73 (5) | Mo2xi—S4—Mo3xiii | 131.31 (5) |
S4v—Mo2—S4vi | 89.47 (3) | Mo2xii—S4—Mo3xiii | 127.85 (5) |
S5—Mo2—S4vii | 98.04 (4) |
Symmetry codes: (i) −x+y, −x+1, z; (ii) −y, x−y, z; (iii) −y+1, x−y+1, z; (iv) x, y, −z+1/2; (v) y, −x+y+1, −z; (vi) x−1, y, z; (vii) −x+y+1, −x+1, z; (viii) −x+y, −x, z; (ix) −x+1, −y+1, −z; (x) −x+y, −x+1, −z+1/2; (xi) x−y+1, x, −z; (xii) x+1, y, z; (xiii) −y+1, x−y, z. |
Experimental details
Crystal data | |
Chemical formula | In4.07Mo15S11.87Se7.13 |
Mr | 2847.4 |
Crystal system, space group | Hexagonal, P63/m |
Temperature (K) | 295 |
a, c (Å) | 9.5974 (2), 19.1668 (5) |
V (Å3) | 1528.93 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 18.17 |
Crystal size (mm) | 0.04 × 0.04 × 0.03 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.431, 0.577 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10366, 1309, 1047 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.090, 1.41 |
No. of reflections | 1309 |
No. of parameters | 77 |
Δρmax, Δρmin (e Å−3) | 4.14, −4.12 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), WinGX publication routines (Farrugia, 1999).
Acknowledgements
This study was financially supported by the research fund of Chungnam National University in 2008.
References
Aurbach, D., Suresh, G. S., Levi, E., Mitelman, A., Mizrahi, O., Chusid, O. & Brunelli, M. (2007). Adv. Mater. 19, 4260–4267. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Grüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285–292. CrossRef IUCr Journals Web of Science Google Scholar
Salloum, D., Gautier, R., Gougeon, P. & Potel, M. (2004). J. Solid State Chem. 177, 1672–1680. Web of Science CrossRef CAS Google Scholar
Salloum, D., Gougeon, P., Roisnel, T. & Potel, M. (2004). J. Alloys Compd. 383, 57–62. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suresh, G. S., Levi, M. D. & Aurbach, D. (2008). Electrochem. Acta, 53, 3889–3896. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The classical Chevrel phases, containing blocks of Mo6X8, have been in interest for both structural respects and application to rechargeable batteries (Suresh, et al., 2008; Aurbach, et al., 2007). The new Chevrel phases InxMo15Se19 (x=2.9 and 3.3) also have been studied by X-ray single-crystal method (Grüttner et al., 1979). These were the first compound having a transition metal cluster with the isolated Mo6 and Mo9 clusters. The Mo9 cluster has the shape of a confacial bioctahedron resulting from the condensation of two octahedral Mo6 clusters. Both clusters are surrounded by face-capping Se atoms to form Mo6Se8 and Mo9Se11 cluster units, and they are interconnected through Mo—Se bonds to build the three dimensional framework (Fig. 1). On our continuous studies to develop new materials for rechargeable batteries, herein, we report the single-crystal structure of the mixed chalcogenide compound In4.07Mo15S11.87Se7.13 (1). We have investigated the effect of the partial substitution of Se by S atoms in the related Chevrel phase, hoping that the building blocks of Chevrel phase would not be changed.
The crystal structure of the title compound in a unit cell is shown in Fig. 1. The framework is composed of Mo6X8 and Mo9X11 cluster units (X=Se/S) that are interconnected through Mo—X bonds. The Mo6 cluster forms the octahedral geometry with Mo—Mo bonds between the six Mo atoms, and the eight faces on the octahedron share a chalcogen atom to create the Mo6X8 building block (Fig. 2). The Mo9 cluster is formed by one dimensional trans-face sharing of two Mo6 octahedron, and surrounded by eleven face-capping chalcogen atoms. The Mo—Mo bond distance related through the threefold axis in the Mo6 clusters is 2.6728 (11) Å. And the Mo—Mo distances within the Mo9 clusters are in the range of 2.6415 (10) - 2.7540 (8) Å which are within the normal range of the other Chevrel phases (Grüttner et al., 1979; Salloum, Gautier et al., 2004; Salloum, Gougeon et al., 2004). The amount of substitution of Se atoms by S atoms are dependent on the atomic positions with the range of 34% (for X3 atom) - 86% (for X1 atom). The higher the S atom occupation, the shorter Mo—X bond distances are.