inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The Chevrel phase In4.07Mo15S11.87Se7.13 with mixed chalcogenide occupancy

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 20 February 2009; accepted 28 February 2009; online 6 March 2009)

The single-crystal of the title compound, indium pentadecamolybdenum nonadeca(sulfide/selenide), was obtained by solid state reaction with an S/Se mixture. It adopts the structure type of In3Mo15Se19 and In3.7Mo15S19, which are non-substituted Chevrel phases in the space group P63/m. The Mo, one S/Se and two In sites have point symmetry m.. and two S/Se and one In atoms are in 3.. sites. This compound contains isolated Mo6 and Mo9 clusters. The shapes of clusters are octa­hedral and confacial biocta­hedral, respectively, face-capped by chalcogen atoms over each triangle face. The Mo—X bonds (X = S, Se) play an important role for the constitution of the framework. The Mo—X distances of 2.479 (2)–2.6687 (9) Å are within the ranges of average values of Mo—S and Mo—Se distances. The In atoms located on sites with m.. symmetry are partially occupied.

Related literature

For discussion of the crystal structures of Chevrel phases, see: Grüttner et al. (1979[Grüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285-292.]). For applications, see: Suresh et al. (2008[Suresh, G. S., Levi, M. D. & Aurbach, D. (2008). Electrochem. Acta, 53, 3889-3896.]); Aurbach et al. (2007[Aurbach, D., Suresh, G. S., Levi, E., Mitelman, A., Mizrahi, O., Chusid, O. & Brunelli, M. (2007). Adv. Mater. 19, 4260-4267.]). For the syntheses and crystal structures of Chevrel phases with various cations, see: Salloum, Gautier et al. (2004[Salloum, D., Gautier, R., Gougeon, P. & Potel, M. (2004). J. Solid State Chem. 177, 1672-1680.]); Salloum, Gougeon et al. (2004[Salloum, D., Gougeon, P., Roisnel, T. & Potel, M. (2004). J. Alloys Compd. 383, 57-62.]).

Experimental

Crystal data
  • In4.07Mo15S11.87Se7.13

  • Mr = 2847.4

  • Hexagonal, P 63 /m

  • a = 9.5974 (2) Å

  • c = 19.1668 (5) Å

  • V = 1528.93 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 18.17 mm−1

  • T = 295 K

  • 0.04 × 0.04 × 0.03 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.431, Tmax = 0.577

  • 10366 measured reflections

  • 1309 independent reflections

  • 1047 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.090

  • S = 1.41

  • 1309 reflections

  • 77 parameters

  • Δρmax = 4.14 e Å−3

  • Δρmin = −4.12 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The classical Chevrel phases, containing blocks of Mo6X8, have been in interest for both structural respects and application to rechargeable batteries (Suresh, et al., 2008; Aurbach, et al., 2007). The new Chevrel phases InxMo15Se19 (x=2.9 and 3.3) also have been studied by X-ray single-crystal method (Grüttner et al., 1979). These were the first compound having a transition metal cluster with the isolated Mo6 and Mo9 clusters. The Mo9 cluster has the shape of a confacial bioctahedron resulting from the condensation of two octahedral Mo6 clusters. Both clusters are surrounded by face-capping Se atoms to form Mo6Se8 and Mo9Se11 cluster units, and they are interconnected through Mo—Se bonds to build the three dimensional framework (Fig. 1). On our continuous studies to develop new materials for rechargeable batteries, herein, we report the single-crystal structure of the mixed chalcogenide compound In4.07Mo15S11.87Se7.13 (1). We have investigated the effect of the partial substitution of Se by S atoms in the related Chevrel phase, hoping that the building blocks of Chevrel phase would not be changed.

The crystal structure of the title compound in a unit cell is shown in Fig. 1. The framework is composed of Mo6X8 and Mo9X11 cluster units (X=Se/S) that are interconnected through Mo—X bonds. The Mo6 cluster forms the octahedral geometry with Mo—Mo bonds between the six Mo atoms, and the eight faces on the octahedron share a chalcogen atom to create the Mo6X8 building block (Fig. 2). The Mo9 cluster is formed by one dimensional trans-face sharing of two Mo6 octahedron, and surrounded by eleven face-capping chalcogen atoms. The Mo—Mo bond distance related through the threefold axis in the Mo6 clusters is 2.6728 (11) Å. And the Mo—Mo distances within the Mo9 clusters are in the range of 2.6415 (10) - 2.7540 (8) Å which are within the normal range of the other Chevrel phases (Grüttner et al., 1979; Salloum, Gautier et al., 2004; Salloum, Gougeon et al., 2004). The amount of substitution of Se atoms by S atoms are dependent on the atomic positions with the range of 34% (for X3 atom) - 86% (for X1 atom). The higher the S atom occupation, the shorter Mo—X bond distances are.

Related literature top

For discussion of the crystal structures of Chevrel phases, see: Grüttner et al. (1979). For applications, see: Suresh et al. (2008); Aurbach et al. (2007). For the syntheses and crystal structures of Chevrel phases with various cations, see: Salloum, Gautier et al. (2004); Salloum, Gougeon et al. (2004).

Experimental top

The title compound was prepared from powder elemental indium (99.999 at.%), molybdenum (99.999 at.%), sulfur (99.98 at.%), and selenium (99.99 at.%) from Aldrich products in the slightly off-stoichiometric 5:15:12:7 ratio. The reaction mixture was sealed under a nitrogen atmosphere in a silica tube and heated at 1343 K for 72 h and cooled to room temperature at the rate of 10 K/h to obtain black single crystals for X-ray studies.

Refinement top

The crystal structure of the title compound was solved and refined starting from the atomic coordinates reported for In~3Mo15Se19 compound (Grüttner et al., 1979). In the first stage of the refinement, the positions of all atoms but In3 were obtained reasonably. The remaining In3 atom was located in subsequent difference Fourier syntheses. The maximum and minimum residual electron density peaks were located at 1.07 and 0.46 Å, respectively, from the In1 atom.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the crystal structure of the title compound along [110], with displacement ellipsoids at the 80% probability level.
[Figure 2] Fig. 2. Mo6X8 and Mo9X11 cluster units interconnected through Mo—X bonds (X=Se/S).
indium pentadecamolybdenum nonadeca(sulfide/selenide) top
Crystal data top
In4.07Mo15S11.87Se7.13Dx = 6.185 Mg m3
Mr = 2847.4Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 1691 reflections
Hall symbol: -P 6cθ = 2.5–28.3°
a = 9.5974 (2) ŵ = 18.17 mm1
c = 19.1668 (5) ÅT = 295 K
V = 1528.93 (6) Å3Block, black
Z = 20.04 × 0.04 × 0.03 mm
F(000) = 2524.1
Data collection top
Bruker SMART CCD area-detector
diffractometer
1047 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 28.3°, θmin = 2.1°
Tmin = 0.431, Tmax = 0.577h = 1212
10366 measured reflectionsk = 912
1309 independent reflectionsl = 2525
Refinement top
Refinement on F277 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.41Δρmax = 4.14 e Å3
1309 reflectionsΔρmin = 4.12 e Å3
Crystal data top
In4.07Mo15S11.87Se7.13Z = 2
Mr = 2847.4Mo Kα radiation
Hexagonal, P63/mµ = 18.17 mm1
a = 9.5974 (2) ÅT = 295 K
c = 19.1668 (5) Å0.04 × 0.04 × 0.03 mm
V = 1528.93 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1309 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1047 reflections with I > 2σ(I)
Tmin = 0.431, Tmax = 0.577Rint = 0.048
10366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03977 parameters
wR(F2) = 0.0900 restraints
S = 1.41Δρmax = 4.14 e Å3
1309 reflectionsΔρmin = 4.12 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.16177 (10)0.50528 (10)0.250.0084 (2)
Mo20.01379 (7)0.16724 (7)0.05730 (3)0.00754 (18)
Mo30.31869 (7)0.50095 (7)0.13306 (3)0.00801 (18)
Se1000.15855 (13)0.0164 (9)0.140 (9)
S1000.15855 (13)0.0164 (9)0.860 (9)
Se20.33330.66670.03438 (13)0.0137 (9)0.142 (9)
S20.33330.66670.03438 (13)0.0137 (9)0.858 (9)
Se30.31626 (16)0.34882 (16)0.250.0139 (5)0.658 (8)
S30.31626 (16)0.34882 (16)0.250.0139 (5)0.342 (8)
Se40.71167 (14)0.03659 (14)0.05076 (5)0.0122 (4)0.437 (6)
S40.71167 (14)0.03659 (14)0.05076 (5)0.0122 (4)0.563 (6)
Se50.01082 (16)0.38207 (15)0.13790 (6)0.0149 (5)0.328 (6)
S50.01082 (16)0.38207 (15)0.13790 (6)0.0149 (5)0.672 (6)
In10.66670.33330.10758 (9)0.0837 (6)
In20.2155 (3)0.0510 (3)0.250.0331 (8)0.468 (4)
In30.5545 (8)0.2420 (7)0.250.055 (2)0.224 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0086 (4)0.0086 (4)0.0080 (4)0.0043 (4)00
Mo20.0079 (3)0.0083 (3)0.0066 (3)0.0041 (3)0.0002 (2)0.0006 (2)
Mo30.0083 (3)0.0085 (3)0.0072 (3)0.0042 (3)0.0002 (2)0.0005 (2)
Se10.0198 (11)0.0198 (11)0.0098 (13)0.0099 (6)00
S10.0198 (11)0.0198 (11)0.0098 (13)0.0099 (6)00
Se20.0132 (10)0.0132 (10)0.0146 (14)0.0066 (5)00
S20.0132 (10)0.0132 (10)0.0146 (14)0.0066 (5)00
Se30.0143 (8)0.0136 (8)0.0129 (7)0.0064 (6)00
S30.0143 (8)0.0136 (8)0.0129 (7)0.0064 (6)00
Se40.0108 (6)0.0127 (6)0.0107 (6)0.0041 (5)0.0031 (4)0.0006 (4)
S40.0108 (6)0.0127 (6)0.0107 (6)0.0041 (5)0.0031 (4)0.0006 (4)
Se50.0197 (8)0.0110 (7)0.0136 (7)0.0073 (6)0.0028 (5)0.0045 (5)
S50.0197 (8)0.0110 (7)0.0136 (7)0.0073 (6)0.0028 (5)0.0045 (5)
In10.0967 (10)0.0967 (10)0.0579 (10)0.0483 (5)00
In20.0608 (17)0.0434 (14)0.0201 (10)0.0446 (13)00
In30.072 (4)0.043 (4)0.060 (4)0.037 (3)00
Geometric parameters (Å, º) top
Mo1—Mo32.7123 (7)Mo3—S32.6687 (9)
Mo1—Mo3i2.7540 (8)Mo3—S4vii2.6034 (12)
Mo2—Mo2ii2.6728 (11)Mo3—S5iii2.4976 (14)
Mo3—Mo3iii2.6415 (10)Mo3—S52.5827 (15)
Mo1—S32.5844 (16)In1—In32.904 (3)
Mo1—S3i2.5681 (16)In2—In32.825 (7)
Mo1—S5iv2.5299 (13)In2—Mo1viii2.862 (2)
Mo2—S12.479 (2)In1—S2ix2.721 (3)
Mo2—S4v2.5093 (12)In2—S1iv2.564 (2)
Mo2—S4vi2.5219 (13)In2—S32.518 (3)
Mo2—S4vii2.6101 (13)In2—S5viii2.8445 (18)
Mo2—S52.5880 (13)In3—S32.937 (6)
Mo3—S22.430 (2)In3—S5viii3.055 (4)
Mo2ii—Mo2—Mo2viii60.0S1—Mo2—Mo2ii57.39 (3)
Mo3iii—Mo3—Mo3i60.0S4v—Mo2—Mo2ii120.33 (3)
Mo3—Mo1—Mo3iv111.46 (4)S4vi—Mo2—Mo2ii60.24 (4)
Mo3—Mo1—Mo3i57.79 (2)S4vii—Mo2—Mo2ii116.94 (3)
Mo3x—Mo1—Mo3i108.95 (4)S4v—Mo2—Mo2viii118.11 (3)
Mo3—Mo1—Mo3x144.30 (4)S4vi—Mo2—Mo2viii120.16 (4)
S5—Mo1—S5iv116.27 (7)S4vii—Mo2—Mo2viii57.01 (3)
S5—Mo1—S3i87.54 (4)S5—Mo2—Mo2ii131.12 (4)
S5—Mo1—S395.12 (4)S5—Mo2—Mo2viii136.62 (4)
S3i—Mo1—S3174.93 (5)S2—Mo3—S3173.60 (5)
S5—Mo1—Mo358.91 (3)S2—Mo3—S5iii91.81 (3)
S5iv—Mo1—Mo3152.53 (5)S5iii—Mo3—S5175.03 (5)
S3i—Mo1—Mo3117.85 (3)S5iii—Mo3—S386.03 (4)
S3—Mo1—Mo360.45 (2)S5iii—Mo3—S4vii86.33 (4)
S5—Mo1—Mo3x145.74 (5)S5—Mo3—S4vii98.34 (4)
S5iv—Mo1—Mo3x56.23 (3)S2—Mo3—Mo3iii57.07 (3)
S3i—Mo1—Mo3x60.07 (2)S3iii—Mo3—Mo3116.82 (3)
S3—Mo1—Mo3x118.08 (2)S3i—Mo3—Mo3119.14 (3)
S5iv—Mo1—Mo3i145.74 (5)S4vii—Mo3—Mo3i136.62 (3)
S3i—Mo1—Mo3i60.07 (2)S4vii—Mo3—Mo3iii130.06 (4)
S1—Mo2—S4v175.41 (5)S5iii—Mo3—Mo3iii60.26 (4)
S1—Mo2—S4vi92.35 (3)S5iii—Mo3—Mo3i120.21 (4)
S1—Mo2—S4vii90.27 (3)Mo1iii—S3—Mo165.07 (5)
S1—Mo2—S591.73 (5)Mo1iii—S3—Mo3iv63.42 (3)
S4v—Mo2—S592.56 (4)Mo1—S5—Mo364.07 (4)
S4vi—Mo2—S587.58 (4)Mo2ii—S1—Mo2viii65.23 (6)
S4v—Mo2—S4vii87.51 (3)Mo2xi—S4—Mo2xii64.49 (4)
S4vi—Mo2—S4vii173.73 (5)Mo2xi—S4—Mo3xiii131.31 (5)
S4v—Mo2—S4vi89.47 (3)Mo2xii—S4—Mo3xiii127.85 (5)
S5—Mo2—S4vii98.04 (4)
Symmetry codes: (i) x+y, x+1, z; (ii) y, xy, z; (iii) y+1, xy+1, z; (iv) x, y, z+1/2; (v) y, x+y+1, z; (vi) x1, y, z; (vii) x+y+1, x+1, z; (viii) x+y, x, z; (ix) x+1, y+1, z; (x) x+y, x+1, z+1/2; (xi) xy+1, x, z; (xii) x+1, y, z; (xiii) y+1, xy, z.

Experimental details

Crystal data
Chemical formulaIn4.07Mo15S11.87Se7.13
Mr2847.4
Crystal system, space groupHexagonal, P63/m
Temperature (K)295
a, c (Å)9.5974 (2), 19.1668 (5)
V3)1528.93 (6)
Z2
Radiation typeMo Kα
µ (mm1)18.17
Crystal size (mm)0.04 × 0.04 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.431, 0.577
No. of measured, independent and
observed [I > 2σ(I)] reflections
10366, 1309, 1047
Rint0.048
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.41
No. of reflections1309
No. of parameters77
Δρmax, Δρmin (e Å3)4.14, 4.12

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), WinGX publication routines (Farrugia, 1999).

 

Acknowledgements

This study was financially supported by the research fund of Chungnam National University in 2008.

References

First citationAurbach, D., Suresh, G. S., Levi, E., Mitelman, A., Mizrahi, O., Chusid, O. & Brunelli, M. (2007). Adv. Mater. 19, 4260–4267.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285–292.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSalloum, D., Gautier, R., Gougeon, P. & Potel, M. (2004). J. Solid State Chem. 177, 1672–1680.  Web of Science CrossRef CAS Google Scholar
First citationSalloum, D., Gougeon, P., Roisnel, T. & Potel, M. (2004). J. Alloys Compd. 383, 57–62.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, G. S., Levi, M. D. & Aurbach, D. (2008). Electrochem. Acta, 53, 3889–3896.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds