inorganic compounds
[Cu2(HF2)(H2O)8][AlF6]·2H2O
aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at
The title compound, octaaqua(hydrogendifluorido)dicopper(II) hexafluoridoaluminate dihydrate, was obtained under hydrothermal conditions. The structure is isotypic with that of the analogous FeIII compound, [Cu2(HF2)(H2O)8][FeF6]·2H2O. The coordination sphere of the CuII atom is formed by one F and three water O atoms at short distances < 2 Å and is augmented by two additional water O atoms at significantly longer distances, leading to a considerably distorted octahedral environment. By edge-sharing, these octahedra form dimeric [Cu2(HF2)(H2O)8]3+ units that are bonded to [AlF6]3− anions ( symmetry) and to water molecules via hydrogen bonds. Besides F—H⋯F interactions between the dimeric cationic units, O—H⋯F and O—H⋯O hydrogen bonds (both in part bifurcated) are observed.
Related literature
For the structure of the isotypic FeIII analogue, see: Le Bail & Mercier (2009). For a natural compound in the Cu/Al/F/O/H system, Cu4Al3(OH)14F3(H2O)2 (mineral name khaidarkanite), see: Rastsvetaeva et al. (1997).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809009702/br2101sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809009702/br2101Isup2.hkl
AlF3 and CuSO4.5H2O (both Merck, p.a.) were reacted hydrothermally in a 2 M HF solution at 393 K for 4 d. Blue crystals of the title compound with mostly platy habit and up to 0.3 mm in length were obtained.
The structure was solved using
For better comparison with the isotypic FeIII analogue (Le Bail & Mercier, 2009), the atomic coordinates of the latter were used for the final cycles. All H atoms were located from difference Fourier maps. The water H atoms were restrained to have O—H distances of 0.85 Å. Their Uiso values were refined with one common parameter. The position of the H atom of the disordered HF group (set with a site occupation factor of 1/2) was fixed during but its Uiso value was refined independently.Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The crystal structure of [Cu2(HF2)(H2O)8][AlF6](H2O)2 in polyhedral representation projected along [010]. Colour key: O atoms white, F atoms green, H atoms are grey, [CuO5F] octahedra are blue, [AlF6] octahedra are red. Displacement ellipsoids are given at the 74% probability level; H atoms are displayed as spheres of arbitrary radius. Hydrogen bonds are indicated with green lines. Note that for clarity only one of the disordered H atoms bonded to the F atom is shown. |
[Cu2(HF2)(H2O)8][AlF6]·2H2O | Z = 1 |
Mr = 487.23 | F(000) = 244 |
Triclinic, P1 | Dx = 2.228 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6119 (3) Å | Cell parameters from 3443 reflections |
b = 7.3410 (3) Å | θ = 2.7–30.0° |
c = 8.3174 (3) Å | µ = 3.12 mm−1 |
α = 107.336 (1)° | T = 293 K |
β = 106.715 (1)° | Plate, blue |
γ = 94.454 (1)° | 0.18 × 0.14 × 0.06 mm |
V = 363.15 (3) Å3 |
Bruker SMART CCD area-detector diffractometer | 2013 independent reflections |
Radiation source: fine-focus sealed tube | 1952 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ω scans | θmax = 30.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −9→9 |
Tmin = 0.52, Tmax = 0.80 | k = −10→10 |
3899 measured reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1517P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
2013 reflections | Δρmax = 0.44 e Å−3 |
130 parameters | Δρmin = −0.54 e Å−3 |
10 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.059 (5) |
[Cu2(HF2)(H2O)8][AlF6]·2H2O | γ = 94.454 (1)° |
Mr = 487.23 | V = 363.15 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.6119 (3) Å | Mo Kα radiation |
b = 7.3410 (3) Å | µ = 3.12 mm−1 |
c = 8.3174 (3) Å | T = 293 K |
α = 107.336 (1)° | 0.18 × 0.14 × 0.06 mm |
β = 106.715 (1)° |
Bruker SMART CCD area-detector diffractometer | 2013 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1952 reflections with I > 2σ(I) |
Tmin = 0.52, Tmax = 0.80 | Rint = 0.019 |
3899 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 10 restraints |
wR(F2) = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.44 e Å−3 |
2013 reflections | Δρmin = −0.54 e Å−3 |
130 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu | 0.60564 (3) | 0.55637 (3) | 0.23399 (2) | 0.01836 (10) | |
Al | 0.0000 | 0.0000 | 0.0000 | 0.01611 (15) | |
F1 | 0.21626 (18) | −0.02274 (17) | −0.09157 (16) | 0.0272 (2) | |
F2 | 0.19296 (18) | 0.12317 (17) | 0.21936 (15) | 0.0282 (2) | |
F3 | −0.02395 (19) | 0.23071 (16) | −0.03724 (18) | 0.0278 (2) | |
F4 | 0.4323 (2) | 0.5863 (2) | 0.38450 (18) | 0.0354 (3) | |
O1 | 0.5678 (2) | 0.2833 (2) | 0.2103 (2) | 0.0289 (3) | |
O2 | 0.6023 (3) | 0.8243 (2) | 0.2410 (2) | 0.0266 (3) | |
O3 | 0.7505 (2) | 0.5080 (2) | 0.0522 (2) | 0.0248 (3) | |
O4 | 0.9127 (2) | 0.6621 (2) | 0.4883 (2) | 0.0278 (3) | |
O5 | 0.2346 (3) | 0.8900 (2) | 0.4430 (2) | 0.0296 (3) | |
H11 | 0.636 (6) | 0.198 (5) | 0.160 (5) | 0.055 (3)* | |
H12 | 0.456 (5) | 0.233 (5) | 0.218 (5) | 0.055 (3)* | |
H21 | 0.668 (6) | 0.881 (5) | 0.196 (5) | 0.055 (3)* | |
H22 | 0.653 (6) | 0.910 (5) | 0.340 (4) | 0.055 (3)* | |
H31 | 0.833 (6) | 0.586 (5) | 0.050 (5) | 0.055 (3)* | |
H32 | 0.811 (6) | 0.421 (5) | 0.027 (5) | 0.055 (3)* | |
H41 | 0.885 (6) | 0.716 (5) | 0.583 (4) | 0.055 (3)* | |
H42 | 1.009 (5) | 0.644 (5) | 0.483 (5) | 0.055 (3)* | |
H51 | 0.213 (6) | 0.925 (5) | 0.365 (4) | 0.055 (3)* | |
H52 | 0.344 (6) | 0.796 (5) | 0.435 (5) | 0.055 (3)* | |
H6 | 0.4722 | 0.5226 | 0.4629 | 0.026 (12)* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.02240 (14) | 0.01519 (13) | 0.02078 (14) | 0.00360 (8) | 0.01130 (9) | 0.00657 (9) |
Al | 0.0176 (3) | 0.0141 (3) | 0.0194 (3) | 0.0027 (2) | 0.0093 (2) | 0.0063 (2) |
F1 | 0.0279 (5) | 0.0262 (5) | 0.0377 (6) | 0.0082 (4) | 0.0226 (5) | 0.0129 (5) |
F2 | 0.0273 (5) | 0.0301 (6) | 0.0225 (5) | −0.0007 (4) | 0.0070 (4) | 0.0049 (4) |
F3 | 0.0304 (5) | 0.0188 (5) | 0.0424 (6) | 0.0066 (4) | 0.0175 (5) | 0.0161 (5) |
F4 | 0.0481 (7) | 0.0379 (7) | 0.0378 (7) | 0.0205 (6) | 0.0281 (6) | 0.0211 (5) |
O1 | 0.0280 (7) | 0.0161 (6) | 0.0471 (8) | 0.0040 (5) | 0.0213 (6) | 0.0084 (6) |
O2 | 0.0394 (7) | 0.0176 (6) | 0.0273 (6) | 0.0042 (5) | 0.0164 (6) | 0.0091 (5) |
O3 | 0.0284 (6) | 0.0189 (6) | 0.0333 (7) | 0.0049 (5) | 0.0200 (6) | 0.0079 (5) |
O4 | 0.0262 (6) | 0.0276 (7) | 0.0280 (6) | 0.0050 (5) | 0.0086 (5) | 0.0073 (5) |
O5 | 0.0379 (7) | 0.0279 (7) | 0.0266 (6) | 0.0090 (6) | 0.0134 (6) | 0.0108 (5) |
Cu—F4 | 1.9049 (12) | Al—F1 | 1.8001 (10) |
Cu—O1 | 1.9441 (14) | Al—F1ii | 1.8001 (10) |
Cu—O2 | 1.9522 (14) | Al—F2ii | 1.8091 (11) |
Cu—O3 | 1.9739 (13) | Al—F2 | 1.8091 (11) |
Cu—O4 | 2.3463 (15) | Al—F3ii | 1.8209 (11) |
Cu—O3i | 2.7139 (16) | Al—F3 | 1.8209 (11) |
Cu—Cui | 3.5440 (4) | F4—F4iii | 2.596 (3) |
F4—Cu—O1 | 86.72 (6) | F4iii—F4—O1 | 75.78 (7) |
F4—Cu—O2 | 90.07 (6) | Cu—F4—O5 | 120.66 (7) |
O1—Cu—O2 | 172.31 (6) | F4iii—F4—O5 | 123.74 (8) |
F4—Cu—O3 | 172.54 (6) | O1—F4—O5 | 159.76 (8) |
O1—Cu—O3 | 91.01 (6) | Cu—F4—O2 | 45.67 (4) |
O2—Cu—O3 | 91.29 (6) | F4iii—F4—O2 | 138.16 (10) |
F4—Cu—O4 | 89.18 (6) | O1—F4—O2 | 92.70 (6) |
O1—Cu—O4 | 97.22 (6) | O5—F4—O2 | 75.99 (6) |
O2—Cu—O4 | 89.72 (6) | H11—O1—H12 | 113 (4) |
O3—Cu—O4 | 98.16 (6) | Cu—O2—Cui | 65.57 (4) |
F4—Cu—O3i | 89.91 (5) | F4—O2—Cui | 93.18 (5) |
O1—Cu—O3i | 91.35 (6) | Cu—O2—H21 | 126 (3) |
O2—Cu—O3i | 81.64 (6) | F4—O2—H21 | 169 (3) |
O3—Cu—O3i | 83.04 (5) | Cui—O2—H21 | 83 (3) |
O4—Cu—O3i | 171.31 (5) | Cu—O2—H22 | 117 (3) |
F1—Al—F1ii | 180.00 (8) | F4—O2—H22 | 91 (3) |
F1—Al—F2ii | 90.44 (5) | Cui—O2—H22 | 176 (3) |
F1ii—Al—F2ii | 89.56 (5) | H21—O2—H22 | 92 (4) |
F1—Al—F2 | 89.56 (5) | Cu—O3—Cui | 96.96 (5) |
F1ii—Al—F2 | 90.44 (5) | Cu—O3—H31 | 123 (3) |
F2ii—Al—F2 | 180.0 | Cui—O3—H31 | 107 (3) |
F1—Al—F3ii | 89.97 (5) | Cu—O3—H32 | 125 (3) |
F1ii—Al—F3ii | 90.03 (5) | Cui—O3—H32 | 106 (3) |
F2ii—Al—F3ii | 90.57 (6) | H31—O3—H32 | 97 (4) |
F2—Al—F3ii | 89.43 (6) | Cu—O4—H41 | 113 (2) |
F1—Al—F3 | 90.03 (5) | F4—O4—H41 | 75 (3) |
F1ii—Al—F3 | 89.97 (5) | Cu—O4—H42 | 121 (3) |
F2ii—Al—F3 | 89.43 (6) | F4—O4—H42 | 156 (3) |
F2—Al—F3 | 90.57 (6) | H41—O4—H42 | 126 (4) |
F3ii—Al—F3 | 180.00 (8) | F4—O5—H51 | 110 (3) |
Cu—F4—F4iii | 109.26 (8) | H51—O5—H52 | 109 (3) |
Cu—F4—O1 | 47.26 (4) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z; (iii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H11···F1iv | 0.87 (3) | 1.74 (3) | 2.6042 (17) | 171 (4) |
O1—H12···F2 | 0.83 (3) | 1.86 (3) | 2.6899 (18) | 176 (4) |
O2—H21···F1i | 0.81 (3) | 1.79 (3) | 2.6020 (18) | 172 (4) |
O2—H22···O5v | 0.83 (3) | 1.86 (3) | 2.684 (2) | 178 (4) |
O3—H31···F3i | 0.77 (3) | 1.82 (3) | 2.5877 (18) | 178 (4) |
O3—H32···F3vi | 0.79 (3) | 1.89 (3) | 2.6700 (17) | 174 (4) |
O4—H41···F2iii | 0.85 (3) | 1.95 (3) | 2.7840 (19) | 169 (4) |
O4—H42···O4vii | 0.67 (3) | 2.41 (4) | 2.758 (3) | 115 (4) |
O4—H42···O5vi | 0.67 (3) | 2.41 (4) | 2.784 (2) | 117 (4) |
O5—H51···F2viii | 0.75 (3) | 2.14 (3) | 2.8538 (19) | 159 (4) |
O5—H51···F3ix | 0.75 (3) | 2.50 (3) | 3.072 (2) | 135 (4) |
O5—H52···F4 | 1.04 (3) | 1.67 (3) | 2.6620 (19) | 158 (3) |
F4—H6···F4iii | 0.9031 (13) | 1.6945 (13) | 2.596 (3) | 175.27 (5) |
Symmetry codes: (i) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z; (v) −x+1, −y+2, −z+1; (vi) x+1, y, z; (vii) −x+2, −y+1, −z+1; (viii) x, y+1, z; (ix) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(HF2)(H2O)8][AlF6]·2H2O |
Mr | 487.23 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.6119 (3), 7.3410 (3), 8.3174 (3) |
α, β, γ (°) | 107.336 (1), 106.715 (1), 94.454 (1) |
V (Å3) | 363.15 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 3.12 |
Crystal size (mm) | 0.18 × 0.14 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.52, 0.80 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3899, 2013, 1952 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.072, 1.08 |
No. of reflections | 2013 |
No. of parameters | 130 |
No. of restraints | 10 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.44, −0.54 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS for Windows (Dowty, 2006).
Cu—F4 | 1.9049 (12) | Cu—O3i | 2.7139 (16) |
Cu—O1 | 1.9441 (14) | Al—F1 | 1.8001 (10) |
Cu—O2 | 1.9522 (14) | Al—F2 | 1.8091 (11) |
Cu—O3 | 1.9739 (13) | Al—F3 | 1.8209 (11) |
Cu—O4 | 2.3463 (15) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H11···F1ii | 0.87 (3) | 1.74 (3) | 2.6042 (17) | 171 (4) |
O1—H12···F2 | 0.83 (3) | 1.86 (3) | 2.6899 (18) | 176 (4) |
O2—H21···F1i | 0.81 (3) | 1.79 (3) | 2.6020 (18) | 172 (4) |
O2—H22···O5iii | 0.83 (3) | 1.86 (3) | 2.684 (2) | 178 (4) |
O3—H31···F3i | 0.77 (3) | 1.82 (3) | 2.5877 (18) | 178 (4) |
O3—H32···F3iv | 0.79 (3) | 1.89 (3) | 2.6700 (17) | 174 (4) |
O4—H41···F2v | 0.85 (3) | 1.95 (3) | 2.7840 (19) | 169 (4) |
O4—H42···O4vi | 0.67 (3) | 2.41 (4) | 2.758 (3) | 115 (4) |
O4—H42···O5iv | 0.67 (3) | 2.41 (4) | 2.784 (2) | 117 (4) |
O5—H51···F2vii | 0.75 (3) | 2.14 (3) | 2.8538 (19) | 159 (4) |
O5—H51···F3viii | 0.75 (3) | 2.50 (3) | 3.072 (2) | 135 (4) |
O5—H52···F4 | 1.04 (3) | 1.67 (3) | 2.6620 (19) | 158 (3) |
F4—H6···F4v | 0.9031 (13) | 1.6945 (13) | 2.596 (3) | 175.27 (5) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z; (iii) −x+1, −y+2, −z+1; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1; (vi) −x+2, −y+1, −z+1; (vii) x, y+1, z; (viii) −x, −y+1, −z. |
References
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Le Bail, A. & Mercier, A.-M. (2009). Acta Cryst. E65, i23–i24. Web of Science CrossRef IUCr Journals Google Scholar
Rastsvetaeva, R. K., Chukanov, N. V. & Karpenko, V. Yu. (1997). Dokl. Akad. Nauk, 353, 354-357. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structure (Fig. 1) of the title compound, [Cu2(HF2)(H2O)8][AlF6].2H2O), is isotypic with [Cu2(HF2)(H2O)8][FeF6].2H2O (Le Bail & Mercier, 2009). Except the Al—F distances (¯d = 1.810 Å versus 1.930 Å for the average Fe—F distance), all other interatomic distances, angles and the hydrogen bond geometry are very similar for the two structures. A detailed description of this structure has been given Le Bail & Mercier (2009).
There is one additional compound described in the Cu/Al/F/O/H system, viz the mineral khaidarkanite with formula Cu4Al3(OH)14F3(H2O)2 (Rastsvetaeva et al., 1997). The latter differs from the title compound as its structure contains distorted [Cu(OH)5(H2O)] octahedra, and [Al(OH)6] and [AlF4(H2O)2] octahedra as building units.