organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-meth­oxy­benzyl­­idene)-4,4′-(m-phenyl­enedi­­oxy)dianiline

aHEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bMolecular Structure Center, Chemistry Department, Clemson University, Clemson, SC 29634-0973, USA
*Correspondence e-mail: raza_shahm@yahoo.com

(Received 21 February 2009; accepted 24 March 2009; online 28 March 2009)

Mol­ecules of the title compound, C34H28N2O4, a Schiff base precursor for macrocycles, are located on a mirror plane. The C=N double bond is trans configured. Inter­molecular C—H⋯O inter­actions stabilize the crystal packing.

Related literature

For the importance of Schiff base macrocycles in macrocyclic and supra­molecular chemistry, see: Ali et al. (2008[Ali, Q., Hussain, Z., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1377.]).

[Scheme 1]

Experimental

Crystal data
  • C34H28N2O4

  • Mr = 528.58

  • Orthorhombic, C m c 21

  • a = 59.344 (13) Å

  • b = 7.484 (3) Å

  • c = 5.988 (2) Å

  • V = 2659.4 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 163 K

  • 0.60 × 0.41 × 0.02 mm

Data collection
  • Rigaku AFC8S Mercury CCD diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.837, Tmax = 1.000 (expected range = 0.836–0.998)

  • 7742 measured reflections

  • 1351 independent reflections

  • 1164 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.142

  • S = 1.09

  • 1351 reflections

  • 185 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O7i 0.96 2.57 3.411 (5) 147
C13—H13⋯O17ii 0.96 2.52 3.405 (4) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation,Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base macrocycles have been of great importance in macrocyclic and supramolecular chemistry (Ali et al., 2008). Here we report the synthesis and crystal structure of the title compound which is a precursor for the synthesis of a Schiff-base macrocycle. The crystal packing is stabilized by some short C—H···O contacts and van der Waals interactions. The methoxy group is coplanar with the benzene ring as revealed by the C6—C1—O7—C8 torsion of 175.5 (3)°. The methoxy oxygen atom acts as an acceptor for a weak C—H···O hydrogen bond from a neighboring molecule. C—H···O interactions stabilize the crystal packing.

Related literature top

For the importance of Schiff base macrocycles in macrocyclic and supramolecular chemistry, see: Ali et al. (2008).

Experimental top

100 mg (0.34 mmol) of 4,4'-(1,3-phenylenebis(oxy))dianiline was dissolved in 2 ml of dichloromethane and then a solution of 4-methoxybenzaldehyde (0.1 ml, 085 mmol) in 2 ml of dichloromethane was added dropwise with stirring. The reaction was stirred at 330 K for 30 min and cooled to room temperature. The solvent was then removed using a rotary evaporator to give a crude solid. The solid was dissolved in dichloromethane and slow evaporation of the dichloromethane afforded needle like crystals in 80% yield.

Refinement top

In the absence of anomalous scatterers Friedel pairs had been merged. All H atoms were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal Structure of the title compound; anisotropic displacement ellipsoid plot, 50% probability; symmetry operator for generating equivalent atoms -x, y, z).
N,N'-Bis(4-methoxybenzylidene)-4,4'-(m- phenylenedioxy)dianiline top
Crystal data top
C34H28N2O4Dx = 1.320 Mg m3
Mr = 528.58Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Cmc21Cell parameters from 3132 reflections
a = 59.344 (13) Åθ = 2.7–26.4°
b = 7.484 (3) ŵ = 0.09 mm1
c = 5.988 (2) ÅT = 163 K
V = 2659.4 (15) Å3Plate, colorless
Z = 40.60 × 0.41 × 0.02 mm
F(000) = 1112
Data collection top
Rigaku AFC8S Mercury CCD
diffractometer
1351 independent reflections
Radiation source: Sealed Tube1164 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.046
Detector resolution: 14.6306 pixels mm-1θmax = 25.4°, θmin = 2.7°
ω scansh = 7153
Absorption correction: multi-scan
(Jacobson, 1998)
k = 89
Tmin = 0.837, Tmax = 1.000l = 77
7742 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0795P)2 + 2.3925P]
where P = (Fo2 + 2Fc2)/3
1351 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C34H28N2O4V = 2659.4 (15) Å3
Mr = 528.58Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 59.344 (13) ŵ = 0.09 mm1
b = 7.484 (3) ÅT = 163 K
c = 5.988 (2) Å0.60 × 0.41 × 0.02 mm
Data collection top
Rigaku AFC8S Mercury CCD
diffractometer
1351 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
1164 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 1.000Rint = 0.046
7742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.142H-atom parameters constrained
S = 1.09Δρmax = 0.29 e Å3
1351 reflectionsΔρmin = 0.23 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20032 (5)0.2529 (4)0.2108 (8)0.0298 (9)
C20.18360 (6)0.1751 (5)0.0811 (7)0.0336 (9)
H20.18730.12110.05960.040*
C30.16140 (6)0.1762 (5)0.1569 (7)0.0322 (9)
H30.14970.12700.06490.039*
C40.15600 (6)0.2481 (4)0.3652 (7)0.0266 (8)
C50.17305 (6)0.3287 (4)0.4920 (7)0.0309 (8)
H50.16950.38150.63390.037*
C60.19483 (6)0.3321 (5)0.4130 (7)0.0319 (9)
H60.20640.39010.49900.038*
O70.22265 (4)0.2623 (4)0.1501 (5)0.0417 (7)
C80.22934 (6)0.1709 (7)0.0480 (9)0.0566 (13)
H8A0.22600.04600.03330.085*
H8B0.24520.18640.07060.085*
H8C0.22130.21890.17340.085*
C90.13286 (6)0.2372 (4)0.4458 (7)0.0294 (9)
H90.12120.20540.34200.035*
N100.12749 (5)0.2679 (4)0.6473 (6)0.0291 (7)
C110.10465 (5)0.2522 (4)0.7171 (7)0.0262 (8)
C120.08845 (6)0.1478 (4)0.6058 (7)0.0299 (8)
H120.09260.08160.47480.036*
C130.06651 (6)0.1403 (4)0.6851 (7)0.0298 (8)
H130.05550.06920.60890.036*
C140.06059 (5)0.2357 (4)0.8746 (6)0.0247 (8)
C150.07629 (5)0.3366 (4)0.9897 (7)0.0277 (8)
H150.07200.40201.12100.033*
C160.09834 (5)0.3414 (4)0.9119 (7)0.0275 (8)
H160.10950.40750.99390.033*
O170.03923 (4)0.2212 (3)0.9705 (4)0.0297 (6)
C180.02009 (5)0.2435 (4)0.8384 (7)0.0265 (8)
C190.02040 (6)0.3185 (4)0.6262 (7)0.0282 (8)
H190.03440.34660.55420.034*
C200.00000.3517 (6)0.5207 (9)0.0282 (11)
H200.00000.39880.37150.034*
C210.00000.2007 (6)0.9448 (10)0.0267 (11)
H210.00000.14321.08810.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (16)0.037 (2)0.032 (2)0.0001 (13)0.0009 (16)0.0060 (16)
C20.0318 (18)0.039 (2)0.030 (2)0.0004 (15)0.0030 (16)0.0016 (16)
C30.0286 (18)0.0354 (19)0.033 (2)0.0043 (13)0.0012 (17)0.0008 (17)
C40.0277 (17)0.0271 (17)0.025 (2)0.0007 (12)0.0006 (15)0.0032 (14)
C50.0312 (17)0.0318 (18)0.030 (2)0.0006 (13)0.0033 (16)0.0025 (16)
C60.0264 (16)0.0343 (18)0.035 (2)0.0021 (13)0.0005 (17)0.0011 (17)
O70.0250 (13)0.0602 (17)0.0398 (17)0.0013 (11)0.0049 (13)0.0029 (14)
C80.031 (2)0.092 (4)0.046 (3)0.004 (2)0.010 (2)0.009 (3)
C90.0294 (17)0.0305 (18)0.028 (2)0.0009 (13)0.0015 (16)0.0030 (17)
N100.0229 (13)0.0323 (15)0.0321 (19)0.0009 (11)0.0007 (14)0.0020 (14)
C110.0230 (16)0.0260 (17)0.030 (2)0.0013 (12)0.0016 (16)0.0015 (15)
C120.0281 (17)0.0298 (17)0.032 (2)0.0029 (13)0.0002 (16)0.0040 (17)
C130.0255 (16)0.0296 (16)0.034 (2)0.0031 (13)0.0010 (16)0.0008 (16)
C140.0205 (15)0.0254 (16)0.028 (2)0.0018 (12)0.0004 (15)0.0057 (14)
C150.0318 (17)0.0255 (16)0.0257 (19)0.0025 (12)0.0012 (15)0.0004 (15)
C160.0265 (15)0.0254 (16)0.031 (2)0.0001 (12)0.0031 (15)0.0005 (15)
O170.0207 (11)0.0401 (13)0.0282 (16)0.0032 (9)0.0002 (11)0.0020 (12)
C180.0223 (17)0.0264 (15)0.031 (2)0.0007 (12)0.0016 (14)0.0034 (16)
C190.0284 (17)0.0260 (15)0.030 (2)0.0004 (12)0.0051 (15)0.0006 (16)
C200.028 (2)0.026 (2)0.030 (3)0.0000.0000.001 (2)
C210.028 (2)0.025 (2)0.027 (3)0.0000.0000.002 (2)
Geometric parameters (Å, º) top
C1—O71.376 (4)C11—C121.407 (5)
C1—C61.387 (6)C12—C131.387 (4)
C1—C21.388 (5)C12—H120.9600
C2—C31.394 (5)C13—C141.386 (5)
C2—H20.9600C13—H130.9600
C3—C41.395 (6)C14—C151.384 (5)
C3—H30.9600C14—O171.396 (4)
C4—C51.402 (5)C15—C161.390 (5)
C4—C91.458 (5)C15—H150.9600
C5—C61.377 (5)C16—H160.9600
C5—H50.9600O17—C181.394 (4)
C6—H60.9600C18—C191.389 (6)
O7—C81.425 (6)C18—C211.389 (4)
C8—H8A0.9599C19—C201.388 (4)
C8—H8B0.9599C19—H190.9600
C8—H8C0.9599C20—C19i1.388 (4)
C9—N101.269 (5)C20—H200.9600
C9—H90.9600C21—C18i1.389 (4)
N10—C111.423 (4)C21—H210.9600
C11—C161.395 (5)
O7—C1—C6115.8 (3)C16—C11—N10117.5 (3)
O7—C1—C2124.2 (4)C12—C11—N10123.9 (3)
C6—C1—C2120.0 (3)C13—C12—C11120.1 (3)
C1—C2—C3119.4 (4)C13—C12—H12119.9
C1—C2—H2120.3C11—C12—H12119.9
C3—C2—H2120.3C14—C13—C12119.8 (3)
C2—C3—C4120.7 (3)C14—C13—H13120.1
C2—C3—H3119.6C12—C13—H13120.1
C4—C3—H3119.6C15—C14—C13121.2 (3)
C3—C4—C5119.0 (3)C15—C14—O17116.7 (3)
C3—C4—C9119.4 (3)C13—C14—O17121.8 (3)
C5—C4—C9121.7 (3)C14—C15—C16118.8 (3)
C6—C5—C4120.0 (4)C14—C15—H15120.6
C6—C5—H5120.0C16—C15—H15120.6
C4—C5—H5120.0C15—C16—C11121.4 (3)
C5—C6—C1120.8 (3)C15—C16—H16119.3
C5—C6—H6119.6C11—C16—H16119.3
C1—C6—H6119.6C18—O17—C14119.8 (3)
C1—O7—C8117.6 (3)C19—C18—C21121.6 (3)
O7—C8—H8A109.5C19—C18—O17123.8 (3)
O7—C8—H8B109.5C21—C18—O17114.3 (4)
H8A—C8—H8B109.5C20—C19—C18118.5 (3)
O7—C8—H8C109.5C20—C19—H19120.7
H8A—C8—H8C109.5C18—C19—H19120.7
H8B—C8—H8C109.5C19—C20—C19i121.4 (5)
N10—C9—C4122.8 (3)C19—C20—H20119.3
N10—C9—H9118.6C19i—C20—H20119.3
C4—C9—H9118.6C18i—C21—C18118.3 (5)
C9—N10—C11120.3 (3)C18i—C21—H21120.9
C16—C11—C12118.6 (3)C18—C21—H21120.9
O7—C1—C2—C3178.7 (3)N10—C11—C12—C13179.8 (3)
C6—C1—C2—C30.6 (5)C11—C12—C13—C140.2 (5)
C1—C2—C3—C42.6 (5)C12—C13—C14—C151.1 (5)
C2—C3—C4—C53.6 (5)C12—C13—C14—O17174.9 (3)
C2—C3—C4—C9176.2 (3)C13—C14—C15—C160.1 (5)
C3—C4—C5—C61.6 (5)O17—C14—C15—C16174.1 (3)
C9—C4—C5—C6178.2 (3)C14—C15—C16—C112.3 (5)
C4—C5—C6—C11.5 (5)C12—C11—C16—C153.5 (5)
O7—C1—C6—C5179.1 (3)N10—C11—C16—C15178.6 (3)
C2—C1—C6—C52.6 (5)C15—C14—O17—C18134.4 (3)
C6—C1—O7—C8175.3 (4)C13—C14—O17—C1851.6 (4)
C2—C1—O7—C86.4 (5)C14—O17—C18—C1915.0 (4)
C3—C4—C9—N10166.3 (3)C14—O17—C18—C21171.2 (3)
C5—C4—C9—N1013.6 (5)C21—C18—C19—C200.4 (5)
C4—C9—N10—C11179.0 (3)O17—C18—C19—C20173.0 (3)
C9—N10—C11—C16159.2 (3)C18—C19—C20—C19i2.6 (6)
C9—N10—C11—C1223.0 (5)C19—C18—C21—C18i3.3 (6)
C16—C11—C12—C132.4 (5)O17—C18—C21—C18i170.7 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O7ii0.962.573.411 (5)147
C13—H13···O17iii0.962.523.405 (4)154
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC34H28N2O4
Mr528.58
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)163
a, b, c (Å)59.344 (13), 7.484 (3), 5.988 (2)
V3)2659.4 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.41 × 0.02
Data collection
DiffractometerRigaku AFC8S Mercury CCD
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.837, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7742, 1351, 1164
Rint0.046
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.142, 1.09
No. of reflections1351
No. of parameters185
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: CrystalClear (Rigaku, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O7i0.96002.57003.411 (5)147.00
C13—H13···O17ii0.96002.52003.405 (4)154.00
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z1/2.
 

Acknowledgements

The authors thank the Organization for the Prohibition of Chemical Weapons for financial support.

References

First citationAli, Q., Hussain, Z., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation,Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds