metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m427-m428

trans,trans,trans-Di­aqua­bis­(nicotin­amide-κN)bis­­(2-nitro­benzoato-κO)copper(II)

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 March 2009; accepted 4 March 2009; online 25 March 2009)

The water-coordinated metal atom in the title compound, [Cu(C7H4NO4)2(C6H6N2O)2(H2O)2], lies on a center of inversion in an all-trans octa­hedral environment with slight distortions. The mol­ecule inter­acts with adjacent mol­ecules through O—H⋯O and N—H⋯O hydrogen bonds, forming a layered network parallel to (010).

Related literature

There are recent examples of diaquadi(aryl­carboxyl­ato)di(nicotinamide)metal(II) compounds, see: Hökelek & Necefoğlu (2007a[Hökelek, T. & Necefoğlu, H. (2007a). Acta Cryst. E63, m1078-m1080.],b[Hökelek, T. & Necefoğlu, H. (2007b). Acta Cryst. E63, m1279-m1281.]); Hökelek et al. (2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m1873-m1874.]); Koksharova et al. (2006[Koksharova, T. V., Sadikov, G. G., Antsyshkina, A. S., Gritsenko, I. S., Sergienko, V. S. & Egorova, O. A. (2006). Russ. J. Inorg. Chem. 51, 895-900.]); Şahin et al. (2007a[Şahin, O., Büyükgüngör, O., Köse, D. A. & Necefoğlu, H. (2007a). Acta Cryst. C63, m510-m512.], 2007b[Şahin, O., Büyükgüngör, O., Köse, D. A., Ozturkkan, E. F. & Necefoğlu, H. (2007b). Acta Cryst. C63, m243-m245.]); Stachova et al. (2006[Stachova, P., Melnik, M., Korobik, M., Mrozinski, M., Koman, M., Glowiak, T. & Valigura, D. (2006). Inorg. Chim. Acta, 360, 1517-1522.]); Çaylak et al. (2007[Çaylak, N., Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m1341-m1343.]); Zhang et al. (2009[Zhang, K.-L., Yang, B., Lin, J.-G. & Ng, S. W. (2009). Acta Cryst. E65, m292.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4NO4)2(C6H6N2O)2(H2O)2]

  • Mr = 676.05

  • Monoclinic, P 21 /n

  • a = 7.9582 (3) Å

  • b = 18.7044 (6) Å

  • c = 9.8573 (2) Å

  • β = 104.012 (2)°

  • V = 1423.63 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 295 K

  • 0.45 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.557, Tmax = 0.877

  • 7295 measured reflections

  • 2507 independent reflections

  • 2069 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.111

  • S = 1.12

  • 2507 reflections

  • 229 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.995 (2)
Cu1—N2 2.006 (3)
Cu1—O1w 2.537 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O2i 0.85 (4) 1.92 (2) 2.726 (4) 159 (4)
O1w—H12⋯O5ii 0.85 (4) 2.11 (2) 2.934 (2) 165 (3)
N3—H32⋯O2iii 0.85 (4) 2.15 (2) 2.929 (4) 152 (4)
N3—H31⋯O5iv 0.85 (4) 2.11 (2) 2.926 (4) 161 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) x, y, z+1; (iv) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

There are recent examples of diaquadi(arylcarboxylato)di(nicotinamide)metal(II) compounds, see: Hökelek & Necefouglu (2007a,b); Hökelek et al. (2007); Koksharova et al. (2006); Şahin et al. (2007a, 2007b); Stachova et al. (2006); Çaylak et al. (2007); Zhang et al. (2009).

Experimental top

A water/methanol (1:1 v/v) solution (3 ml) of copper nitrate trihydrate (0.174 g, 0.6 mmol) was added to a water/methanol (1:1 v/v) solution (3 ml) of 2-nitrobenzoic acid (0.100 g, 0.6 mmol), sodium hydroxide (0.024 g 0.6 mmol) and nicotinamide (0.073 g, 0.6 mmol). Blue block were obtained after several days (yield: 40%). CH&N elemental analysis: calc. for C26H24CuN6O12: C 46.19, H 3.59,N 12.43%; found: C 46.37, H 3.41, N 12.60%.

Refinement top

Carbon-bound H atoms were placed in calculated positions and were allowed to ride on the parent atoms. The oxygen-bound ones were located in a difference Fourier map, and were refined with distance restraints N–H, O–H = 0.85±0.01 Å; an additional H···H 1.39 + 0.01 Å restraint was used. Their displacement parameters were freely refined.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of Cu(H2O)2(C7H4NO4)2(C6H6N2O)2; displacement ellipsoids are drawn at the 50% probabability level, and H atoms as spheres of arbitrary radii.
trans,trans,trans-Diaquabis(nicotinamide- κN)bis(2-nitrobenzoato-κO)copper(II) top
Crystal data top
[Cu(C7H4NO4)2(C6H6N2O)2(H2O)2]F(000) = 694
Mr = 676.05Dx = 1.577 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3858 reflections
a = 7.9582 (3) Åθ = 2.2–25.0°
b = 18.7044 (6) ŵ = 0.84 mm1
c = 9.8573 (2) ÅT = 295 K
β = 104.012 (2)°Block, blue
V = 1423.63 (8) Å30.45 × 0.20 × 0.16 mm
Z = 2
Data collection top
Bruker SMART area-detector
diffractometer
2507 independent reflections
Radiation source: medium-focus sealed tube2069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.557, Tmax = 0.877k = 1422
7295 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0395P)2 + 1.8061P]
where P = (Fo2 + 2Fc2)/3
2507 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.31 e Å3
4 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu(C7H4NO4)2(C6H6N2O)2(H2O)2]V = 1423.63 (8) Å3
Mr = 676.05Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.9582 (3) ŵ = 0.84 mm1
b = 18.7044 (6) ÅT = 295 K
c = 9.8573 (2) Å0.45 × 0.20 × 0.16 mm
β = 104.012 (2)°
Data collection top
Bruker SMART area-detector
diffractometer
2507 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2069 reflections with I > 2σ(I)
Tmin = 0.557, Tmax = 0.877Rint = 0.036
7295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0484 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.31 e Å3
2507 reflectionsΔρmin = 0.46 e Å3
229 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.02960 (19)
O10.6141 (3)0.41263 (12)0.4483 (2)0.0329 (5)
O20.3896 (3)0.37179 (15)0.2856 (3)0.0531 (7)
O30.3215 (5)0.2416 (3)0.0916 (5)0.1123 (16)
O40.3942 (5)0.2153 (2)0.3108 (5)0.1137 (16)
O50.0632 (4)0.49124 (18)0.8331 (3)0.0642 (9)
O1W0.8082 (4)0.54476 (16)0.5876 (3)0.0493 (7)
H110.772 (6)0.5753 (19)0.637 (4)0.067 (15)*
H120.883 (5)0.522 (2)0.647 (4)0.073 (16)*
N10.4256 (5)0.2375 (2)0.2043 (5)0.0624 (10)
N20.4917 (3)0.45491 (14)0.6829 (3)0.0290 (6)
N30.1614 (5)0.4274 (2)1.0283 (3)0.0539 (9)
H310.081 (4)0.442 (2)1.065 (4)0.069 (14)*
H320.241 (4)0.403 (2)1.082 (4)0.075 (16)*
C10.6639 (4)0.32322 (17)0.2924 (3)0.0297 (7)
C20.6033 (5)0.26281 (19)0.2137 (4)0.0372 (8)
C30.7038 (6)0.2231 (2)0.1461 (4)0.0496 (10)
H30.65780.18350.09290.057 (12)*
C40.8740 (6)0.2428 (2)0.1585 (4)0.0552 (11)
H40.94330.21700.11250.065 (13)*
C50.9406 (5)0.3009 (2)0.2392 (4)0.0503 (10)
H51.05610.31350.24950.067 (14)*
C60.8366 (4)0.3409 (2)0.3053 (4)0.0395 (8)
H60.88340.38010.35910.038 (10)*
C70.5449 (4)0.37176 (17)0.3480 (3)0.0289 (7)
C80.3508 (4)0.46333 (17)0.7327 (3)0.0306 (7)
H80.25710.48820.67850.029 (9)*
C90.3378 (4)0.43678 (18)0.8613 (3)0.0304 (7)
C100.4781 (5)0.3999 (2)0.9403 (4)0.0434 (9)
H100.47470.38191.02760.048 (11)*
C110.6240 (5)0.3899 (2)0.8889 (4)0.0461 (10)
H11A0.71860.36440.94020.062 (13)*
C120.6259 (4)0.41833 (19)0.7608 (4)0.0364 (8)
H12A0.72410.41200.72680.032 (9)*
C130.1760 (5)0.4530 (2)0.9067 (4)0.0419 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0375 (3)0.0296 (3)0.0256 (3)0.0041 (3)0.0153 (2)0.0014 (2)
O10.0378 (13)0.0332 (12)0.0292 (12)0.0057 (10)0.0110 (10)0.0034 (10)
O20.0318 (14)0.0677 (19)0.0557 (17)0.0093 (13)0.0028 (12)0.0203 (14)
O30.061 (2)0.178 (5)0.091 (3)0.027 (3)0.006 (2)0.071 (3)
O40.094 (3)0.118 (4)0.140 (4)0.030 (3)0.049 (3)0.048 (3)
O50.0489 (16)0.107 (3)0.0436 (15)0.0375 (17)0.0254 (13)0.0285 (16)
O1W0.0454 (16)0.0586 (19)0.0407 (16)0.0032 (14)0.0045 (13)0.0056 (14)
N10.060 (2)0.051 (2)0.079 (3)0.0141 (19)0.023 (2)0.022 (2)
N20.0302 (14)0.0338 (15)0.0250 (14)0.0037 (12)0.0104 (11)0.0004 (12)
N30.046 (2)0.084 (3)0.039 (2)0.020 (2)0.0237 (17)0.0225 (18)
C10.0332 (18)0.0310 (17)0.0259 (17)0.0033 (14)0.0089 (14)0.0021 (14)
C20.040 (2)0.0354 (19)0.037 (2)0.0021 (16)0.0110 (16)0.0003 (16)
C30.066 (3)0.037 (2)0.046 (2)0.007 (2)0.014 (2)0.0094 (18)
C40.069 (3)0.054 (3)0.050 (3)0.025 (2)0.027 (2)0.003 (2)
C50.041 (2)0.052 (2)0.062 (3)0.0077 (19)0.0224 (19)0.005 (2)
C60.036 (2)0.037 (2)0.045 (2)0.0019 (16)0.0094 (16)0.0030 (17)
C70.0341 (18)0.0287 (17)0.0254 (17)0.0025 (14)0.0104 (14)0.0028 (14)
C80.0326 (18)0.0327 (18)0.0270 (17)0.0055 (15)0.0082 (14)0.0006 (14)
C90.0335 (18)0.0333 (18)0.0269 (17)0.0033 (14)0.0123 (14)0.0022 (14)
C100.050 (2)0.054 (2)0.0303 (18)0.0127 (19)0.0168 (17)0.0124 (17)
C110.043 (2)0.056 (2)0.042 (2)0.0189 (19)0.0159 (18)0.0153 (18)
C120.0342 (19)0.041 (2)0.038 (2)0.0087 (16)0.0168 (16)0.0057 (16)
C130.042 (2)0.053 (2)0.0347 (19)0.0079 (18)0.0167 (17)0.0081 (17)
Geometric parameters (Å, º) top
Cu1—O1i1.995 (2)C1—C61.389 (5)
Cu1—O11.995 (2)C1—C71.507 (4)
Cu1—N2i2.006 (3)C2—C31.377 (5)
Cu1—N22.006 (3)C3—C41.380 (6)
Cu1—O1w2.537 (3)C3—H30.9300
O1—C71.266 (4)C4—C51.375 (6)
O2—C71.240 (4)C4—H40.9300
O3—N11.216 (5)C5—C61.389 (5)
O4—N11.210 (5)C5—H50.9300
O5—C131.237 (4)C6—H60.9300
O1W—H110.85 (4)C8—C91.389 (4)
O1W—H120.85 (4)C8—H80.9300
N1—C21.472 (5)C9—C101.381 (5)
N2—C81.337 (4)C9—C131.493 (5)
N2—C121.342 (4)C10—C111.387 (5)
N3—C131.322 (5)C10—H100.9300
N3—H310.85 (4)C11—C121.374 (5)
N3—H320.85 (4)C11—H11A0.9300
C1—C21.389 (5)C12—H12A0.9300
O1i—Cu1—O1180.000 (1)C4—C3—H3120.5
O1i—Cu1—N2i90.07 (10)C5—C4—C3119.7 (4)
O1—Cu1—N2i89.93 (10)C5—C4—H4120.1
O1i—Cu1—N289.93 (10)C3—C4—H4120.1
O1—Cu1—N290.07 (10)C4—C5—C6120.4 (4)
N2i—Cu1—N2180.00 (14)C4—C5—H5119.8
O1i—Cu1—O1W96.04 (9)C6—C5—H5119.8
O1—Cu1—O1W83.96 (9)C5—C6—C1121.2 (4)
N2i—Cu1—O1W85.84 (10)C5—C6—H6119.4
N2—Cu1—O1W94.16 (10)C1—C6—H6119.4
C7—O1—Cu1123.7 (2)O2—C7—O1125.5 (3)
Cu1—O1W—H1189 (3)O2—C7—C1117.3 (3)
Cu1—O1W—H12122 (3)O1—C7—C1117.1 (3)
H11—O1W—H12103 (4)N2—C8—C9123.2 (3)
O4—N1—O3125.1 (4)N2—C8—H8118.4
O4—N1—C2116.9 (4)C9—C8—H8118.4
O3—N1—C2117.9 (4)C10—C9—C8117.7 (3)
C8—N2—C12118.1 (3)C10—C9—C13124.8 (3)
C8—N2—Cu1119.6 (2)C8—C9—C13117.5 (3)
C12—N2—Cu1122.3 (2)C9—C10—C11119.7 (3)
C13—N3—H31120 (3)C9—C10—H10120.2
C13—N3—H32123 (3)C11—C10—H10120.2
H31—N3—H32115 (4)C12—C11—C10118.7 (3)
C2—C1—C6116.5 (3)C12—C11—H11A120.7
C2—C1—C7122.0 (3)C10—C11—H11A120.7
C6—C1—C7121.2 (3)N2—C12—C11122.6 (3)
C3—C2—C1123.1 (3)N2—C12—H12A118.7
C3—C2—N1117.2 (3)C11—C12—H12A118.7
C1—C2—N1119.7 (3)O5—C13—N3122.1 (3)
C2—C3—C4119.0 (4)O5—C13—C9119.9 (3)
C2—C3—H3120.5N3—C13—C9118.0 (3)
N2i—Cu1—O1—C765.5 (2)C2—C1—C6—C51.7 (5)
N2—Cu1—O1—C7114.5 (2)C7—C1—C6—C5171.9 (3)
O1W—Cu1—O1—C7151.3 (2)Cu1—O1—C7—O214.1 (5)
O1i—Cu1—N2—C840.3 (2)Cu1—O1—C7—C1160.6 (2)
O1—Cu1—N2—C8139.7 (2)C2—C1—C7—O224.1 (5)
O1W—Cu1—N2—C8136.3 (2)C6—C1—C7—O2149.2 (3)
O1i—Cu1—N2—C12137.2 (3)C2—C1—C7—O1160.7 (3)
O1—Cu1—N2—C1242.8 (3)C6—C1—C7—O126.0 (4)
O1W—Cu1—N2—C1241.1 (3)C12—N2—C8—C90.7 (5)
C6—C1—C2—C32.6 (5)Cu1—N2—C8—C9176.9 (2)
C7—C1—C2—C3171.0 (3)N2—C8—C9—C100.1 (5)
C6—C1—C2—N1175.3 (3)N2—C8—C9—C13177.3 (3)
C7—C1—C2—N111.1 (5)C8—C9—C10—C110.8 (6)
O4—N1—C2—C3111.8 (5)C13—C9—C10—C11178.0 (4)
O3—N1—C2—C369.5 (5)C9—C10—C11—C121.2 (6)
O4—N1—C2—C166.2 (5)C8—N2—C12—C110.4 (5)
O3—N1—C2—C1112.5 (4)Cu1—N2—C12—C11177.2 (3)
C1—C2—C3—C41.3 (6)C10—C11—C12—N20.6 (6)
N1—C2—C3—C4176.6 (4)C10—C9—C13—O5174.3 (4)
C2—C3—C4—C50.9 (6)C8—C9—C13—O52.9 (5)
C3—C4—C5—C61.6 (6)C10—C9—C13—N33.5 (6)
C4—C5—C6—C10.3 (6)C8—C9—C13—N3179.3 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2i0.85 (4)1.92 (2)2.726 (4)159 (4)
O1w—H12···O5ii0.85 (4)2.11 (2)2.934 (2)165 (3)
N3—H32···O2iii0.85 (4)2.15 (2)2.929 (4)152 (4)
N3—H31···O5iv0.85 (4)2.11 (2)2.926 (4)161 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C7H4NO4)2(C6H6N2O)2(H2O)2]
Mr676.05
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.9582 (3), 18.7044 (6), 9.8573 (2)
β (°) 104.012 (2)
V3)1423.63 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.45 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.557, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
7295, 2507, 2069
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.111, 1.12
No. of reflections2507
No. of parameters229
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.46

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Cu1—O11.995 (2)Cu1—O1w2.537 (3)
Cu1—N22.006 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2i0.85 (4)1.92 (2)2.726 (4)159 (4)
O1w—H12···O5ii0.85 (4)2.11 (2)2.934 (2)165 (3)
N3—H32···O2iii0.85 (4)2.15 (2)2.929 (4)152 (4)
N3—H31···O5iv0.85 (4)2.11 (2)2.926 (4)161 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x, y+1, z+2.
 

Acknowledgements

We thank the Foundation of Jiangsu Provincial Key Program of Physical Chemistry in Yangzhou University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.  Google Scholar
First citationÇaylak, N., Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m1341–m1343.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m1873–m1874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007a). Acta Cryst. E63, m1078–m1080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007b). Acta Cryst. E63, m1279–m1281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoksharova, T. V., Sadikov, G. G., Antsyshkina, A. S., Gritsenko, I. S., Sergienko, V. S. & Egorova, O. A. (2006). Russ. J. Inorg. Chem. 51, 895–900.  Web of Science CrossRef Google Scholar
First citationŞahin, O., Büyükgüngör, O., Köse, D. A. & Necefoğlu, H. (2007a). Acta Cryst. C63, m510–m512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, O., Büyükgüngör, O., Köse, D. A., Ozturkkan, E. F. & Necefoğlu, H. (2007b). Acta Cryst. C63, m243–m245.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStachova, P., Melnik, M., Korobik, M., Mrozinski, M., Koman, M., Glowiak, T. & Valigura, D. (2006). Inorg. Chim. Acta, 360, 1517–1522.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhang, K.-L., Yang, B., Lin, J.-G. & Ng, S. W. (2009). Acta Cryst. E65, m292.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m427-m428
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds