organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1,3-Thia­zol-2-yl)benzamide

aDepartment of Chemistry, College of Science, University of Tehran, PO Box 13145-143, Tehran, Iran, bInstitute of Chemical Industries, Iranian Research Organization for Science and Technology, PO Box 15815-358, Tehran, Iran, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 March 2009; accepted 13 March 2009; online 25 March 2009)

The title compound, C10H8N2OS, features a nonplanar mol­ecule [dihedral angle between the two aromatic rings = 43.6 (1)°]. Two mol­ecules are linked by N—H⋯N hydrogen bonds about a centre of inversion, giving rise to a hydrogen-bonded dimer.

Related literature

The synthesis uses microwave radiation, which compares with benzoyl­ation by reacting benzoyl cyanide in an ionic liquid: see: Kumar et al. (2007[Kumar, V., Parmar, V. S. & Malhotra, S. M. (2007). Tetrahedron Lett. 48, 809-812.]); Prasad et al. (2005[Prasad, A. K., Kumar, V., Malhotra, S., Ravikumar, V. T., Sanghvib, Y. S. & Parmar, V. S. (2005). Bioorg. Med. Chem. 13, 4467-4472.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2OS

  • Mr = 204.24

  • Monoclinic, P 21 /c

  • a = 12.0142 (2) Å

  • b = 5.0581 (1) Å

  • c = 15.4090 (3) Å

  • β = 99.093 (1)°

  • V = 924.62 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 123 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEXdiffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.898, Tmax = 0.955

  • 6130 measured reflections

  • 2104 independent reflections

  • 1900 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.087

  • S = 1.07

  • 2104 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.88 (2) 2.04 (2) 2.922 (2) 173 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The synthesis uses microwave radiation, which compares with benzoylation by reacting benzoyl cyanide in an ionic liquid: see: Kumar et al. (2007); Prasad et al. (2005).

Experimental top

2-Aminothiazole (1 g, 10 mmol) and benzoyl cyanide (1.31 g, 10 mmol) were stirred together without any solvent for 3 h at 323 K. The oily product was purified by recrystalization from ethanol (yield 1.97 g, 90%); m.p. 383 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino H-atom was located in a difference Fouier map, and was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellisoid plot (Barbour, 2001) of C10H8N2OS; probability levels are set at 70% and H-atoms are drawn as spheres of arbitrary radius.
N-(1,3-Thiazol-2-yl)benzamide top
Crystal data top
C10H8N2OSF(000) = 424
Mr = 204.24Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3661 reflections
a = 12.0142 (2) Åθ = 2.7–28.3°
b = 5.0581 (1) ŵ = 0.31 mm1
c = 15.4090 (3) ÅT = 123 K
β = 99.093 (1)°Prism, colorless
V = 924.62 (3) Å30.35 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2104 independent reflections
Radiation source: fine-focus sealed tube1900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.898, Tmax = 0.955k = 66
6130 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3231P]
where P = (Fo2 + 2Fc2)/3
2104 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H8N2OSV = 924.62 (3) Å3
Mr = 204.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0142 (2) ŵ = 0.31 mm1
b = 5.0581 (1) ÅT = 123 K
c = 15.4090 (3) Å0.35 × 0.20 × 0.15 mm
β = 99.093 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2104 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1900 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.955Rint = 0.016
6130 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.37 e Å3
2104 reflectionsΔρmin = 0.21 e Å3
131 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31389 (3)0.14766 (7)0.64434 (2)0.02139 (12)
O10.17527 (8)0.5276 (2)0.56442 (6)0.0229 (2)
N10.49298 (9)0.2290 (2)0.57510 (7)0.0196 (2)
N20.34258 (9)0.4997 (2)0.51416 (7)0.0186 (2)
H20.3903 (16)0.574 (4)0.4833 (13)0.039 (5)*
C10.43025 (12)0.0499 (3)0.67627 (9)0.0229 (3)
H10.43380.18920.71800.028*
C20.51534 (11)0.0214 (3)0.63371 (8)0.0210 (3)
H2A0.58630.06560.64340.025*
C30.38904 (11)0.3090 (2)0.57304 (8)0.0173 (3)
C40.23427 (11)0.5903 (3)0.50994 (8)0.0179 (3)
C50.19345 (10)0.7638 (3)0.43320 (8)0.0178 (3)
C60.11908 (11)0.9675 (3)0.44382 (9)0.0207 (3)
H60.09810.99890.49980.025*
C70.07532 (11)1.1252 (3)0.37287 (9)0.0239 (3)
H70.02511.26550.38040.029*
C80.10522 (11)1.0769 (3)0.29083 (9)0.0235 (3)
H80.07541.18480.24220.028*
C90.17835 (11)0.8722 (3)0.27946 (9)0.0221 (3)
H90.19780.83890.22310.026*
C100.22320 (11)0.7157 (3)0.35072 (8)0.0199 (3)
H100.27390.57650.34320.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02421 (19)0.02313 (19)0.01715 (19)0.00215 (12)0.00419 (13)0.00464 (12)
O10.0245 (5)0.0273 (5)0.0181 (5)0.0007 (4)0.0071 (4)0.0020 (4)
N10.0231 (5)0.0187 (5)0.0170 (5)0.0014 (4)0.0027 (4)0.0016 (4)
N20.0201 (5)0.0202 (5)0.0160 (5)0.0008 (4)0.0049 (4)0.0042 (4)
C10.0300 (7)0.0190 (6)0.0181 (6)0.0018 (5)0.0012 (5)0.0027 (5)
C20.0260 (6)0.0174 (6)0.0182 (6)0.0013 (5)0.0010 (5)0.0002 (5)
C30.0223 (6)0.0170 (6)0.0125 (6)0.0019 (5)0.0027 (5)0.0008 (4)
C40.0210 (6)0.0184 (6)0.0143 (6)0.0004 (5)0.0028 (5)0.0018 (5)
C50.0180 (6)0.0189 (6)0.0161 (6)0.0021 (5)0.0015 (5)0.0008 (5)
C60.0181 (6)0.0242 (6)0.0201 (6)0.0001 (5)0.0038 (5)0.0028 (5)
C70.0206 (6)0.0209 (6)0.0291 (7)0.0022 (5)0.0007 (5)0.0006 (5)
C80.0213 (6)0.0241 (6)0.0231 (7)0.0013 (5)0.0022 (5)0.0061 (5)
C90.0221 (6)0.0277 (7)0.0163 (6)0.0026 (5)0.0028 (5)0.0017 (5)
C100.0200 (6)0.0217 (6)0.0180 (6)0.0015 (5)0.0032 (5)0.0001 (5)
Geometric parameters (Å, º) top
S1—C11.7255 (14)C5—C61.3903 (18)
S1—C31.7327 (13)C5—C101.3949 (18)
O1—C41.2231 (16)C6—C71.3877 (19)
N1—C31.3084 (17)C6—H60.9500
N1—C21.3834 (16)C7—C81.389 (2)
N2—C41.3714 (17)C7—H70.9500
N2—C31.3801 (16)C8—C91.387 (2)
N2—H20.88 (2)C8—H80.9500
C1—C21.348 (2)C9—C101.3913 (18)
C1—H10.9500C9—H90.9500
C2—H2A0.9500C10—H100.9500
C4—C51.4919 (17)
C1—S1—C388.49 (6)C6—C5—C4118.65 (11)
C3—N1—C2109.69 (11)C10—C5—C4121.33 (12)
C4—N2—C3123.16 (11)C7—C6—C5120.24 (12)
C4—N2—H2121.6 (13)C7—C6—H6119.9
C3—N2—H2114.8 (13)C5—C6—H6119.9
C2—C1—S1110.43 (10)C6—C7—C8119.71 (13)
C2—C1—H1124.8C6—C7—H7120.1
S1—C1—H1124.8C8—C7—H7120.1
C1—C2—N1115.88 (12)C7—C8—C9120.40 (12)
C1—C2—H2A122.1C7—C8—H8119.8
N1—C2—H2A122.1C9—C8—H8119.8
N1—C3—N2121.17 (11)C8—C9—C10119.95 (13)
N1—C3—S1115.46 (10)C8—C9—H9120.0
N2—C3—S1123.29 (10)C10—C9—H9120.0
O1—C4—N2121.95 (12)C5—C10—C9119.78 (12)
O1—C4—C5122.90 (12)C5—C10—H10120.1
N2—C4—C5115.14 (11)C9—C10—H10120.1
C6—C5—C10119.91 (12)
C3—S1—C1—C21.28 (10)N2—C4—C5—C6146.32 (12)
S1—C1—C2—N10.31 (15)O1—C4—C5—C10141.00 (14)
C3—N1—C2—C11.25 (16)N2—C4—C5—C1037.46 (17)
C2—N1—C3—N2174.45 (11)C10—C5—C6—C70.75 (19)
C2—N1—C3—S12.29 (14)C4—C5—C6—C7177.03 (11)
C4—N2—C3—N1179.70 (12)C5—C6—C7—C80.7 (2)
C4—N2—C3—S13.83 (17)C6—C7—C8—C90.1 (2)
C1—S1—C3—N12.12 (10)C7—C8—C9—C100.7 (2)
C1—S1—C3—N2174.53 (11)C6—C5—C10—C90.09 (19)
C3—N2—C4—O17.78 (19)C4—C5—C10—C9176.27 (12)
C3—N2—C4—C5170.70 (11)C8—C9—C10—C50.6 (2)
O1—C4—C5—C635.22 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.88 (2)2.04 (2)2.922 (2)173 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H8N2OS
Mr204.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)12.0142 (2), 5.0581 (1), 15.4090 (3)
β (°) 99.093 (1)
V3)924.62 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.898, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
6130, 2104, 1900
Rint0.016
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.087, 1.07
No. of reflections2104
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.88 (2)2.04 (2)2.922 (2)173 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Research Council of Tehran University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKumar, V., Parmar, V. S. & Malhotra, S. M. (2007). Tetrahedron Lett. 48, 809–812.  Web of Science CrossRef CAS Google Scholar
First citationPrasad, A. K., Kumar, V., Malhotra, S., Ravikumar, V. T., Sanghvib, Y. S. & Parmar, V. S. (2005). Bioorg. Med. Chem. 13, 4467–4472.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds