organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2-methyl-N-(2-methyl­phen­yl)­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 10 March 2009; accepted 16 March 2009; online 19 March 2009)

In the crystal structure of the title compound, C14H14ClNO2S, the two aromatic rings are tilted relative to each other by 45.8 (1)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur.

Related literature

For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Gowda et al. (2009a[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o476.],b[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o576.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClNO2S

  • Mr = 295.77

  • Triclinic, [P \overline 1]

  • a = 8.1200 (8) Å

  • b = 8.1832 (8) Å

  • c = 10.985 (1) Å

  • α = 95.81 (1)°

  • β = 96.92 (1)°

  • γ = 106.82 (1)°

  • V = 686.46 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.86 mm−1

  • T = 299 K

  • 0.50 × 0.48 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.228, Tmax = 0.500

  • 2572 measured reflections

  • 2366 independent reflections

  • 2194 reflections with I > 2σ(I)

  • Rint = 0.054

  • 3 standard reflections frequency: 120 min intensity decay: 2.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.235

  • S = 1.10

  • 2366 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.87 (4) 2.14 (4) 2.993 (4) 167 (3)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of substituent effects on the structures of N-(aryl)-arylsulfonamides, the structure of 4-chloro-2-methyl-N-(2-methylphenyl)benzenesulfonamide has been determined (Gowda et al. 2009a,b). The conformations of the N—C bonds in the C—SO2—NH—C segment have trans and gauche torsion angles with the S=O bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of 73.0 (2). The ortho-methyl group in the sulfonyl benzene ring is oriented away from the S=O bonds and so also the ortho-methyl group in the anilino benzene ring from the N—H bond. The two benzene rings are tilted relative to each other by 45.8 (1)°, compared with the values of 86.6 (2)° (molecule 1) and 83.0 (2)° (molecule 2), in the two independent molecules of 4-chloro-2-methyl- N-(phenyl)benzenesulfonamide (Gowda et al., 2009a). The other bond parameters in the title compound are similar to those observed in 2,4-dimethyl-N-(phenyl)benzenesulfonamide (Gowda et al., 2009b) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of the molecules is characterized by N—H···O(S) hydrogen bonds (Table 1, Fig.2) .

Related literature top

For related structures, see: Gelbrich et al. (2007); Gowda et al. (2009a,b); Perlovich et al. (2006).

Experimental top

A solution of m-chlorotoluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chloro-2-methylbenzenesulfonylchloride was treated with o-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 4-chloro-2-methyl-N- (2-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a diffrerence map and its position was refined. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom) or Uiso(H) = 1.5 Ueq for methyl groups.

To improve considerably the values of R1, wR2, and GOOF these four reflections (-6 1 0, -2 3 5, 1 5 1, -2 -2 9) were omitted from the refinement.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of of the title compound with hydrogen bonding shown as dashed lines.
4-Chloro-2-methyl-N-(2-methylphenyl)benzenesulfonamide top
Crystal data top
C14H14ClNO2SZ = 2
Mr = 295.77F(000) = 308
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 8.1200 (8) ÅCell parameters from 25 reflections
b = 8.1832 (8) Åθ = 5.7–25.2°
c = 10.985 (1) ŵ = 3.86 mm1
α = 95.81 (1)°T = 299 K
β = 96.92 (1)°Prism, colourless
γ = 106.82 (1)°0.50 × 0.48 × 0.18 mm
V = 686.46 (11) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2194 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 66.9°, θmin = 4.1°
ω/2θ scansh = 91
Absorption correction: psi-scan
(North et al., 1968)
k = 99
Tmin = 0.228, Tmax = 0.500l = 1313
2572 measured reflections3 standard reflections every 120 min
2366 independent reflections intensity decay: 2.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.235 w = 1/[σ2(Fo2) + (0.1867P)2 + 0.2192P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.003
2366 reflectionsΔρmax = 0.82 e Å3
178 parametersΔρmin = 0.63 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (4)
Crystal data top
C14H14ClNO2Sγ = 106.82 (1)°
Mr = 295.77V = 686.46 (11) Å3
Triclinic, P1Z = 2
a = 8.1200 (8) ÅCu Kα radiation
b = 8.1832 (8) ŵ = 3.86 mm1
c = 10.985 (1) ÅT = 299 K
α = 95.81 (1)°0.50 × 0.48 × 0.18 mm
β = 96.92 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2194 reflections with I > 2σ(I)
Absorption correction: psi-scan
(North et al., 1968)
Rint = 0.054
Tmin = 0.228, Tmax = 0.5003 standard reflections every 120 min
2572 measured reflections intensity decay: 2.5%
2366 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.235H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.82 e Å3
2366 reflectionsΔρmin = 0.63 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35649 (13)0.29943 (14)0.56281 (9)0.0698 (5)
S10.70711 (9)0.00610 (8)0.15793 (6)0.0388 (4)
O10.8587 (3)0.0468 (3)0.2078 (2)0.0511 (6)
O20.5669 (3)0.1383 (3)0.0812 (2)0.0518 (7)
N10.7667 (3)0.1454 (3)0.0718 (2)0.0408 (6)
H1N0.678 (5)0.160 (5)0.026 (3)0.049*
C10.6176 (4)0.0795 (4)0.2802 (3)0.0381 (7)
C20.7184 (4)0.1738 (4)0.3914 (3)0.0446 (8)
C30.6322 (5)0.2414 (4)0.4757 (3)0.0492 (8)
H30.69540.30750.54960.059*
C40.4541 (5)0.2123 (4)0.4518 (3)0.0471 (8)
C50.3557 (4)0.1194 (4)0.3436 (3)0.0483 (8)
H50.23610.10150.32840.058*
C60.4388 (4)0.0529 (4)0.2572 (3)0.0445 (7)
H60.37430.01050.18280.053*
C70.9159 (4)0.2918 (4)0.1137 (2)0.0370 (7)
C80.8982 (4)0.4545 (4)0.1516 (3)0.0417 (7)
C91.0502 (6)0.5921 (4)0.1866 (3)0.0580 (9)
H91.04200.70160.21000.070*
C101.2117 (6)0.5710 (5)0.1876 (4)0.0654 (11)
H101.31130.66480.21320.078*
C111.2262 (5)0.4090 (6)0.1501 (4)0.0655 (11)
H111.33570.39430.15110.079*
C121.0791 (5)0.2706 (5)0.1118 (3)0.0516 (8)
H121.08890.16290.08460.062*
C130.9139 (5)0.2097 (6)0.4271 (3)0.0607 (10)
H13A0.94010.10250.42580.073*
H13B0.95130.27410.50880.073*
H13C0.97360.27530.36910.073*
C140.7233 (5)0.4810 (4)0.1522 (4)0.0570 (10)
H14A0.64600.41740.07870.068*
H14B0.73520.60150.15460.068*
H14C0.67670.44100.22390.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0723 (8)0.0846 (8)0.0629 (7)0.0384 (6)0.0258 (5)0.0018 (5)
S10.0430 (6)0.0280 (5)0.0466 (5)0.0131 (3)0.0107 (3)0.0002 (3)
O10.0554 (14)0.0426 (12)0.0650 (14)0.0270 (10)0.0156 (11)0.0088 (10)
O20.0570 (15)0.0327 (11)0.0614 (14)0.0106 (10)0.0117 (11)0.0058 (9)
N10.0440 (15)0.0362 (13)0.0422 (13)0.0137 (11)0.0079 (10)0.0001 (10)
C10.0431 (17)0.0308 (14)0.0427 (15)0.0129 (11)0.0114 (12)0.0052 (11)
C20.0422 (18)0.0510 (17)0.0449 (16)0.0191 (13)0.0091 (13)0.0103 (13)
C30.052 (2)0.0490 (18)0.0446 (16)0.0155 (14)0.0073 (14)0.0003 (13)
C40.053 (2)0.0497 (18)0.0484 (17)0.0255 (15)0.0195 (14)0.0119 (14)
C50.0429 (18)0.0519 (18)0.0543 (18)0.0202 (14)0.0119 (14)0.0052 (14)
C60.0441 (18)0.0426 (16)0.0473 (16)0.0147 (13)0.0081 (13)0.0037 (12)
C70.0427 (16)0.0365 (14)0.0328 (13)0.0119 (12)0.0113 (11)0.0043 (10)
C80.058 (2)0.0339 (14)0.0338 (14)0.0128 (13)0.0117 (12)0.0031 (11)
C90.075 (3)0.0388 (17)0.0516 (18)0.0032 (15)0.0113 (16)0.0070 (13)
C100.059 (2)0.058 (2)0.062 (2)0.0077 (17)0.0005 (17)0.0193 (17)
C110.041 (2)0.082 (3)0.073 (2)0.0107 (18)0.0111 (16)0.032 (2)
C120.049 (2)0.0553 (19)0.0581 (19)0.0217 (15)0.0186 (15)0.0146 (15)
C130.043 (2)0.080 (3)0.0544 (19)0.0199 (17)0.0005 (15)0.0072 (17)
C140.074 (2)0.0400 (17)0.069 (2)0.0274 (17)0.0329 (19)0.0081 (15)
Geometric parameters (Å, º) top
Cl1—C41.734 (3)C7—C121.388 (5)
S1—O11.427 (2)C7—C81.407 (4)
S1—O21.431 (2)C8—C91.390 (5)
S1—N11.633 (3)C8—C141.498 (5)
S1—C11.778 (3)C9—C101.370 (6)
N1—C71.424 (4)C9—H90.9300
N1—H1N0.87 (4)C10—C111.391 (7)
C1—C61.392 (5)C10—H100.9300
C1—C21.400 (4)C11—C121.373 (5)
C2—C31.389 (5)C11—H110.9300
C2—C131.522 (5)C12—H120.9300
C3—C41.383 (5)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.366 (5)C13—H13C0.9600
C5—C61.383 (5)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
O1—S1—O2119.17 (14)C8—C7—N1121.0 (3)
O1—S1—N1108.06 (14)C9—C8—C7117.4 (3)
O2—S1—N1105.21 (14)C9—C8—C14120.8 (3)
O1—S1—C1109.71 (14)C7—C8—C14121.9 (3)
O2—S1—C1106.93 (14)C10—C9—C8121.9 (3)
N1—S1—C1107.12 (13)C10—C9—H9119.1
C7—N1—S1121.1 (2)C8—C9—H9119.1
C7—N1—H1N118 (2)C9—C10—C11119.8 (3)
S1—N1—H1N112 (3)C9—C10—H10120.1
C6—C1—C2121.0 (3)C11—C10—H10120.1
C6—C1—S1115.7 (2)C12—C11—C10120.1 (4)
C2—C1—S1123.3 (2)C12—C11—H11119.9
C3—C2—C1116.9 (3)C10—C11—H11119.9
C3—C2—C13117.4 (3)C11—C12—C7119.8 (3)
C1—C2—C13125.6 (3)C11—C12—H12120.1
C4—C3—C2121.3 (3)C7—C12—H12120.1
C4—C3—H3119.4C2—C13—H13A109.5
C2—C3—H3119.4C2—C13—H13B109.5
C5—C4—C3121.7 (3)H13A—C13—H13B109.5
C5—C4—Cl1120.0 (3)C2—C13—H13C109.5
C3—C4—Cl1118.3 (3)H13A—C13—H13C109.5
C4—C5—C6118.1 (3)H13B—C13—H13C109.5
C4—C5—H5120.9C8—C14—H14A109.5
C6—C5—H5120.9C8—C14—H14B109.5
C5—C6—C1120.9 (3)H14A—C14—H14B109.5
C5—C6—H6119.6C8—C14—H14C109.5
C1—C6—H6119.6H14A—C14—H14C109.5
C12—C7—C8121.0 (3)H14B—C14—H14C109.5
C12—C7—N1118.0 (3)
O1—S1—N1—C745.5 (2)Cl1—C4—C5—C6179.7 (2)
O2—S1—N1—C7173.8 (2)C4—C5—C6—C10.2 (5)
C1—S1—N1—C772.7 (2)C2—C1—C6—C50.2 (5)
O1—S1—C1—C6152.0 (2)S1—C1—C6—C5177.4 (2)
O2—S1—C1—C621.4 (3)S1—N1—C7—C1275.9 (3)
N1—S1—C1—C690.9 (2)S1—N1—C7—C8106.4 (3)
O1—S1—C1—C230.4 (3)C12—C7—C8—C90.1 (4)
O2—S1—C1—C2161.0 (3)N1—C7—C8—C9177.5 (3)
N1—S1—C1—C286.6 (3)C12—C7—C8—C14178.9 (3)
C6—C1—C2—C31.1 (5)N1—C7—C8—C141.3 (4)
S1—C1—C2—C3176.3 (2)C7—C8—C9—C101.6 (5)
C6—C1—C2—C13179.4 (3)C14—C8—C9—C10179.5 (3)
S1—C1—C2—C133.1 (5)C8—C9—C10—C111.5 (6)
C1—C2—C3—C41.8 (5)C9—C10—C11—C120.3 (6)
C13—C2—C3—C4178.7 (3)C10—C11—C12—C71.8 (5)
C2—C3—C4—C51.5 (5)C8—C7—C12—C111.6 (5)
C2—C3—C4—Cl1179.3 (2)N1—C7—C12—C11179.3 (3)
C3—C4—C5—C60.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.87 (4)2.14 (4)2.993 (4)167 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H14ClNO2S
Mr295.77
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)8.1200 (8), 8.1832 (8), 10.985 (1)
α, β, γ (°)95.81 (1), 96.92 (1), 106.82 (1)
V3)686.46 (11)
Z2
Radiation typeCu Kα
µ (mm1)3.86
Crystal size (mm)0.50 × 0.48 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionPsi-scan
(North et al., 1968)
Tmin, Tmax0.228, 0.500
No. of measured, independent and
observed [I > 2σ(I)] reflections
2572, 2366, 2194
Rint0.054
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.235, 1.10
No. of reflections2366
No. of parameters178
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.82, 0.63

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.87 (4)2.14 (4)2.993 (4)167 (3)
Symmetry code: (i) x+1, y, z.
 

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds