organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Formyl-r-2,c-6-bis­­(4-meth­oxy­phen­yl)-c-3,t-3-di­methyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, Tamilnadu, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 13 March 2009; accepted 18 March 2009; online 25 March 2009)

In the title compound, C22H25NO4, the piperidine ring adopts a distorted boat conformation. The two benzene rings are approximately perpendicular to each other, making a dihedral angle of 86.2 (8)°. The crystal packing is stabilized by C—H⋯O and C—H⋯π inter­actions.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25NO4

  • Mr = 367.43

  • Monoclinic, P 21 /c

  • a = 11.7274 (3) Å

  • b = 18.8556 (4) Å

  • c = 9.7178 (3) Å

  • β = 113.507 (1)°

  • V = 1970.54 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.983

  • 26804 measured reflections

  • 6250 independent reflections

  • 4080 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.142

  • S = 1.03

  • 6250 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.97 2.44 3.3446 (16) 155
C6—H6⋯O2ii 0.98 2.41 3.3708 (16) 168
C18—H18⋯O1iii 0.93 2.53 3.3018 (17) 140
C10—H10⋯Cg1iv 0.93 2.90 3.6627 (17) 140
Symmetry codes: (i) x, y, z-1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+2. Cg(1) is the centroid of the C16–C21 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

Supporting information


Comment top

Piperidine, a basic component of the piper alkaloid piper nigrum is a monocyclic cyclohexane with a hetero atom affixed in the first position. The skeletal ring of piperidine is contained in the molecules of many synthetic and natural medicaments. A significant industrial application of piperidine is for the production of dipiperidinyl dithiuram tetrasulfide, which can be used as a rubber vulcanization accelerator.

The piperidine ring adopts distorted boat conformation with puckering parameters (Cremer & Pople, 1975) q2 = 0.630 (1) Å, q3 =0.070 (1)Å and ϕ2= 87.2 (1)° and the asymmetry parameters ΔC2(N1) and ΔC2(C4) = 14.78 (12)Å (Nardelli, 1983). The angles between the best plane of the piperidine ring (N1,C3,C4,C6) and the phenyl rings (C8—C13 and C16—C21) are 84.17 (7)° and 80.70 (7)°, respectively. The two phenyl rings are approximately perpendicular to each other as can be seen from the dihedral angle of 86.23 (8)°. The methyl substituents C14 and C15 are oriented equatorially [N1—C2—C3—C14 =] -178.88 (11)° and axially [N1—C2—C3—C15 =] -59.52 (13) ° with respect to the piperidine ring. The sum of the bond angles around N1 atom (359.3°) indicates sp2 hybridization.

The packing of the molecules is controlled by C—H···O types of intermolecular interactions. The symmetry related molecules form a dimer with the graph-set motif of R22(16) (Bernstein et al., 1995) through hydrogen bonds. Further a C—H··· π interaction also leads to the formation of a dimer [C10—H10 = 0.9301 Å, H10···Cg(1) =2.9035 Å, C10···Cg(1) = 3.6627 (17) Å and C10—H10···Cg(1) = 139.71°, where Cg(1) is the centroid of the ring (C16—C21) at (1 - x,-y,2 - z)] .

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). Cg(1) is the centroid of the C16–C21 ring.

Experimental top

The ice-cold solution of acetic-formic anhydride was prepared from acetic anhydride (10 ml) and 85% formic acid (5 ml) and was added slowly to a cold solution of r-2, c-6-bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidine-4-one (1.69 g) in benzene (30 ml). The reaction mixture was stirred at room temperature for 5 hrs. The organic layer was separated, dried over anhydrous Na2SO4 and concentrated. The resulting mass was purified by crystallization from benzene-petroleum ether (333–353 K) in the ratio 1:1.

Refinement top

H atoms were positioned geometrically (C—H=0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H, 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1983).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the molecule showing that the thermal ellipsoids are drawn at 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular packing of the compound viewed down the b axis is shown. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
1-Formyl-r-2,c-6-bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidin-4-one top
Crystal data top
C22H25NO4F(000) = 784
Mr = 367.43Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6250 reflections
a = 11.7274 (3) Åθ = 2.2–31.0°
b = 18.8556 (4) ŵ = 0.09 mm1
c = 9.7178 (3) ÅT = 293 K
β = 113.507 (1)°Block, colourless
V = 1970.54 (9) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
6250 independent reflections
Radiation source: fine-focus sealed tube4080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 31.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1616
Tmin = 0.979, Tmax = 0.983k = 2726
26804 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.3342P]
where P = (Fo2 + 2Fc2)/3
6250 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H25NO4V = 1970.54 (9) Å3
Mr = 367.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7274 (3) ŵ = 0.09 mm1
b = 18.8556 (4) ÅT = 293 K
c = 9.7178 (3) Å0.25 × 0.20 × 0.20 mm
β = 113.507 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
6250 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4080 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.031
26804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
6250 reflectionsΔρmin = 0.19 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.17408 (11)0.62041 (6)0.40308 (14)0.0338 (3)
H20.11200.65380.40870.041*
C30.10682 (11)0.57637 (7)0.25999 (14)0.0381 (3)
C40.19953 (12)0.53109 (7)0.22723 (13)0.0363 (3)
C50.33023 (12)0.55897 (7)0.27795 (15)0.0366 (3)
H5A0.36230.54590.20360.044*
H5B0.38120.53530.37090.044*
C60.34585 (11)0.63892 (6)0.30324 (13)0.0323 (2)
H60.31380.66210.20480.039*
C70.28230 (12)0.73249 (7)0.42790 (15)0.0398 (3)
H70.34000.75990.40810.048*
C80.22360 (11)0.58092 (7)0.55153 (14)0.0352 (3)
C90.26574 (13)0.51168 (7)0.57097 (15)0.0429 (3)
H90.26380.48630.48800.052*
C100.31075 (14)0.47894 (8)0.70986 (16)0.0446 (3)
H100.33960.43250.71960.054*
C110.31275 (14)0.51526 (8)0.83330 (15)0.0446 (3)
C120.26964 (16)0.58424 (8)0.81650 (17)0.0530 (4)
H120.27000.60920.89930.064*
C130.22628 (14)0.61613 (8)0.67819 (16)0.0462 (3)
H130.19790.66270.66900.055*
C140.00369 (14)0.53174 (9)0.2744 (2)0.0553 (4)
H14A0.05320.56210.29530.083*
H14B0.03930.49830.35480.083*
H14C0.04000.50670.18220.083*
C150.04780 (14)0.62642 (8)0.12465 (17)0.0513 (4)
H15A0.01230.65630.14010.077*
H15B0.00760.59890.03510.077*
H15C0.11140.65530.11430.077*
C160.48138 (11)0.65875 (6)0.38343 (14)0.0332 (3)
C170.55115 (11)0.63584 (7)0.52784 (14)0.0368 (3)
H170.51340.60820.57700.044*
C180.67579 (12)0.65292 (7)0.60132 (16)0.0418 (3)
H180.72120.63660.69820.050*
C190.73163 (13)0.69426 (8)0.52933 (19)0.0511 (4)
C200.66322 (15)0.71813 (10)0.3859 (2)0.0623 (5)
H200.70080.74640.33750.075*
C210.53942 (14)0.70045 (8)0.31376 (17)0.0488 (4)
H210.49430.71680.21680.059*
C220.3775 (2)0.41457 (10)0.9928 (2)0.0736 (5)
H22A0.40420.40231.09690.110*
H22B0.44160.40270.95900.110*
H22C0.30320.38870.93490.110*
C230.92890 (16)0.68961 (11)0.7357 (3)0.0787 (6)
H23A1.01170.70790.76510.118*
H23B0.93110.63870.73500.118*
H23C0.89510.70530.80560.118*
N10.27207 (9)0.66443 (5)0.38626 (11)0.0321 (2)
O10.17227 (10)0.47451 (5)0.16419 (12)0.0515 (3)
O20.22263 (10)0.76191 (5)0.48956 (13)0.0524 (3)
O30.35310 (13)0.48797 (6)0.97457 (12)0.0646 (3)
O40.85343 (11)0.71456 (8)0.59033 (17)0.0816 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0292 (5)0.0337 (6)0.0364 (6)0.0019 (5)0.0109 (5)0.0052 (5)
C30.0320 (6)0.0379 (6)0.0374 (7)0.0076 (5)0.0065 (5)0.0049 (5)
C40.0435 (7)0.0340 (6)0.0260 (6)0.0071 (5)0.0080 (5)0.0030 (5)
C50.0382 (6)0.0353 (6)0.0354 (6)0.0023 (5)0.0137 (5)0.0077 (5)
C60.0317 (6)0.0327 (6)0.0288 (6)0.0019 (5)0.0081 (5)0.0006 (4)
C70.0364 (6)0.0301 (6)0.0448 (7)0.0007 (5)0.0076 (6)0.0040 (5)
C80.0340 (6)0.0369 (6)0.0361 (6)0.0041 (5)0.0155 (5)0.0055 (5)
C90.0548 (8)0.0413 (7)0.0374 (7)0.0031 (6)0.0234 (6)0.0050 (5)
C100.0556 (8)0.0411 (7)0.0425 (7)0.0052 (6)0.0252 (7)0.0025 (6)
C110.0527 (8)0.0492 (8)0.0360 (7)0.0079 (6)0.0220 (6)0.0009 (6)
C120.0787 (11)0.0465 (8)0.0418 (8)0.0045 (7)0.0323 (8)0.0108 (6)
C130.0609 (9)0.0382 (7)0.0454 (8)0.0004 (6)0.0275 (7)0.0072 (6)
C140.0413 (8)0.0585 (9)0.0620 (10)0.0193 (7)0.0162 (7)0.0103 (8)
C150.0406 (7)0.0506 (8)0.0431 (8)0.0029 (6)0.0039 (6)0.0003 (6)
C160.0305 (5)0.0305 (6)0.0351 (6)0.0017 (4)0.0094 (5)0.0001 (5)
C170.0337 (6)0.0379 (6)0.0359 (6)0.0024 (5)0.0108 (5)0.0017 (5)
C180.0347 (6)0.0400 (7)0.0406 (7)0.0003 (5)0.0042 (5)0.0002 (5)
C190.0328 (7)0.0457 (8)0.0640 (10)0.0071 (6)0.0081 (7)0.0027 (7)
C200.0453 (8)0.0647 (10)0.0719 (11)0.0151 (7)0.0182 (8)0.0234 (9)
C210.0437 (8)0.0492 (8)0.0470 (8)0.0054 (6)0.0113 (6)0.0152 (6)
C220.1037 (15)0.0640 (11)0.0502 (10)0.0027 (10)0.0277 (10)0.0144 (8)
C230.0342 (8)0.0782 (13)0.0957 (15)0.0048 (8)0.0036 (9)0.0030 (11)
N10.0293 (5)0.0279 (5)0.0341 (5)0.0019 (4)0.0076 (4)0.0031 (4)
O10.0621 (6)0.0396 (5)0.0481 (6)0.0136 (5)0.0169 (5)0.0155 (4)
O20.0531 (6)0.0367 (5)0.0643 (7)0.0024 (4)0.0204 (5)0.0136 (5)
O30.1002 (9)0.0585 (7)0.0396 (6)0.0004 (6)0.0326 (6)0.0052 (5)
O40.0371 (6)0.0867 (9)0.0976 (10)0.0224 (6)0.0023 (6)0.0220 (8)
Geometric parameters (Å, º) top
C2—N11.4785 (15)C12—H120.9300
C2—C81.5181 (18)C13—H130.9300
C2—C31.5395 (17)C14—H14A0.9600
C2—H20.9800C14—H14B0.9600
C3—C41.5128 (19)C14—H14C0.9600
C3—C141.5250 (19)C15—H15A0.9600
C3—C151.541 (2)C15—H15B0.9600
C4—O11.2081 (15)C15—H15C0.9600
C4—C51.5053 (18)C16—C211.3811 (18)
C5—C61.5267 (17)C16—C171.3818 (17)
C5—H5A0.9700C17—C181.3847 (18)
C5—H5B0.9700C17—H170.9300
C6—N11.4791 (15)C18—C191.375 (2)
C6—C161.5117 (16)C18—H180.9300
C6—H60.9800C19—O41.3648 (17)
C7—O21.2211 (17)C19—C201.377 (2)
C7—N11.3365 (16)C20—C211.378 (2)
C7—H70.9300C20—H200.9300
C8—C91.3821 (18)C21—H210.9300
C8—C131.3877 (18)C22—O31.410 (2)
C9—C101.3831 (19)C22—H22A0.9600
C9—H90.9300C22—H22B0.9600
C10—C111.3734 (19)C22—H22C0.9600
C10—H100.9300C23—O41.415 (2)
C11—O31.3621 (17)C23—H23A0.9600
C11—C121.381 (2)C23—H23B0.9600
C12—C131.372 (2)C23—H23C0.9600
N1—C2—C8111.15 (9)C3—C14—H14A109.5
N1—C2—C3110.11 (10)C3—C14—H14B109.5
C8—C2—C3117.24 (10)H14A—C14—H14B109.5
N1—C2—H2105.8C3—C14—H14C109.5
C8—C2—H2105.8H14A—C14—H14C109.5
C3—C2—H2105.8H14B—C14—H14C109.5
C4—C3—C14111.76 (11)C3—C15—H15A109.5
C4—C3—C2110.01 (10)C3—C15—H15B109.5
C14—C3—C2110.73 (11)H15A—C15—H15B109.5
C4—C3—C15106.37 (11)C3—C15—H15C109.5
C14—C3—C15108.28 (12)H15A—C15—H15C109.5
C2—C3—C15109.55 (11)H15B—C15—H15C109.5
O1—C4—C5120.22 (12)C21—C16—C17117.89 (12)
O1—C4—C3122.55 (12)C21—C16—C6120.70 (11)
C5—C4—C3117.22 (10)C17—C16—C6121.41 (11)
C4—C5—C6116.02 (11)C16—C17—C18121.78 (12)
C4—C5—H5A108.3C16—C17—H17119.1
C6—C5—H5A108.3C18—C17—H17119.1
C4—C5—H5B108.3C19—C18—C17119.24 (13)
C6—C5—H5B108.3C19—C18—H18120.4
H5A—C5—H5B107.4C17—C18—H18120.4
N1—C6—C16111.21 (9)O4—C19—C18124.49 (15)
N1—C6—C5110.49 (10)O4—C19—C20115.74 (14)
C16—C6—C5111.18 (10)C18—C19—C20119.77 (13)
N1—C6—H6107.9C19—C20—C21120.42 (14)
C16—C6—H6107.9C19—C20—H20119.8
C5—C6—H6107.9C21—C20—H20119.8
O2—C7—N1125.80 (13)C20—C21—C16120.90 (14)
O2—C7—H7117.1C20—C21—H21119.6
N1—C7—H7117.1C16—C21—H21119.6
C9—C8—C13116.76 (12)O3—C22—H22A109.5
C9—C8—C2125.00 (11)O3—C22—H22B109.5
C13—C8—C2118.23 (12)H22A—C22—H22B109.5
C8—C9—C10122.10 (12)O3—C22—H22C109.5
C8—C9—H9118.9H22A—C22—H22C109.5
C10—C9—H9118.9H22B—C22—H22C109.5
C11—C10—C9119.78 (13)O4—C23—H23A109.5
C11—C10—H10120.1O4—C23—H23B109.5
C9—C10—H10120.1H23A—C23—H23B109.5
O3—C11—C10124.75 (14)O4—C23—H23C109.5
O3—C11—C12116.01 (12)H23A—C23—H23C109.5
C10—C11—C12119.23 (13)H23B—C23—H23C109.5
C13—C12—C11120.24 (13)C7—N1—C2119.04 (10)
C13—C12—H12119.9C7—N1—C6118.42 (10)
C11—C12—H12119.9C2—N1—C6121.82 (9)
C12—C13—C8121.86 (13)C11—O3—C22117.96 (12)
C12—C13—H13119.1C19—O4—C23118.02 (14)
C8—C13—H13119.1
N1—C2—C3—C457.08 (13)C2—C8—C13—C12179.98 (13)
C8—C2—C3—C471.28 (13)N1—C6—C16—C21120.55 (13)
N1—C2—C3—C14178.88 (11)C5—C6—C16—C21115.87 (14)
C8—C2—C3—C1452.76 (15)N1—C6—C16—C1759.60 (15)
N1—C2—C3—C1559.52 (13)C5—C6—C16—C1763.98 (15)
C8—C2—C3—C15172.12 (11)C21—C16—C17—C180.8 (2)
C14—C3—C4—O126.68 (18)C6—C16—C17—C18179.06 (12)
C2—C3—C4—O1150.13 (12)C16—C17—C18—C190.5 (2)
C15—C3—C4—O191.31 (15)C17—C18—C19—O4179.89 (15)
C14—C3—C4—C5152.76 (12)C17—C18—C19—C200.1 (2)
C2—C3—C4—C529.32 (15)O4—C19—C20—C21179.76 (17)
C15—C3—C4—C589.25 (13)C18—C19—C20—C210.4 (3)
O1—C4—C5—C6158.68 (12)C19—C20—C21—C160.2 (3)
C3—C4—C5—C621.86 (16)C17—C16—C21—C200.4 (2)
C4—C5—C6—N144.33 (14)C6—C16—C21—C20179.41 (15)
C4—C5—C6—C16168.32 (10)O2—C7—N1—C25.3 (2)
N1—C2—C8—C996.55 (14)O2—C7—N1—C6175.84 (12)
C3—C2—C8—C931.31 (17)C8—C2—N1—C793.80 (13)
N1—C2—C8—C1384.08 (14)C3—C2—N1—C7134.58 (12)
C3—C2—C8—C13148.07 (12)C8—C2—N1—C696.04 (12)
C13—C8—C9—C101.2 (2)C3—C2—N1—C635.59 (14)
C2—C8—C9—C10179.46 (13)C16—C6—N1—C751.11 (14)
C8—C9—C10—C110.9 (2)C5—C6—N1—C7175.08 (11)
C9—C10—C11—O3178.92 (14)C16—C6—N1—C2138.67 (11)
C9—C10—C11—C120.1 (2)C5—C6—N1—C214.70 (15)
O3—C11—C12—C13179.56 (15)C10—C11—O3—C229.8 (2)
C10—C11—C12—C130.5 (2)C12—C11—O3—C22169.20 (16)
C11—C12—C13—C80.2 (2)C18—C19—O4—C232.2 (3)
C9—C8—C13—C120.6 (2)C20—C19—O4—C23178.04 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.972.443.3446 (16)155
C6—H6···O2ii0.982.413.3708 (16)168
C18—H18···O1iii0.932.533.3018 (17)140
C10—H10···Cg1iv0.932.903.6627 (17)140
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC22H25NO4
Mr367.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.7274 (3), 18.8556 (4), 9.7178 (3)
β (°) 113.507 (1)
V3)1970.54 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
26804, 6250, 4080
Rint0.031
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.142, 1.03
No. of reflections6250
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1983).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.972.443.3446 (16)154.6
C6—H6···O2ii0.982.413.3708 (16)168.1
C18—H18···O1iii0.932.533.3018 (17)140.4
C10—H10···Cg1iv0.932.903.6627 (17)139.7
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x+1, y, z+2.
 

Acknowledgements

TK thanks Dr Babu Varghese, SAIF, IIT–Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds