organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(1-Cyclo­hexen-1-yl)-3-(4-meth­oxy­phen­yl)isoxazole

aLaboratorio de Biorgánica, Instituto de Química, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Isla Teja S/N, Valdivia, Chile, bLaboratorio de Síntesis Orgánica, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, Chile, cDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and dDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 20 March 2009; accepted 24 March 2009; online 28 March 2009)

In the title compound, C16H17NO2, the isoxazole ring makes a dihedral angle of 14.81 (13)° with the 4-methoxy­phenyl ring. Two atoms of the cyclo­hexene ring are disordered over two almost equally occupied positions [0.526 (13)/0.474 (13)]. The mol­ecular structure features a short intra­molecular C—H⋯O contact.

Related literature

For background to isoxazoles, see: Melo (2005[Melo, T. (2005). Curr. Org. Chem. 9, 925-958.]). For their biological activities, see: Narlawar et al. (2008[Narlawar, R., Pickhardt, M., Leuchtenberger, S., Baumann, K., Krause, S., Dyrks, T., Weggen, S., Mandelkow, E. & Schmidt, B. (2008). Chem. Med. Chem. 3, 165-172.]); Patrick et al. (2007[Patrick, D. A., Bakunov, S. A., Bakunova, S. M., Kumar, E., Lombardy, R. J., Jones, S. K., Bridges, A. S., Zhirnov, O., Hall, J. E., Wenzler, T., Brun, R. & Tidwell, R. R. (2007). J. Med. Chem. 50, 2468-2485.]); Taldone et al. (2008[Taldone, T., Gozman, A., Maharaj, R. & Chiosis, G. (2008). Curr. Opin. Pharmacol. 8, 370-374.]); Rizzi et al. (2008[Rizzi, L., Dallanoce, C., Matera, C., Magrone, P., Pucci, L., Gotti, C., Clementi, F. & De Amici, M. (2008). Bioorg. Med. Chem. Lett. 18, 4651-4654.]); Velaparthi et al. (2008[Velaparthi, S., Brunsteiner, M., Uddin, R., Wan, B. J., Franzblau, S. G. & Petukhov, P. A. (2008). J. Med. Chem. 51, 1999-2002.]). For synthetic details, see: Hansen et al. (2005[Hansen, T. V., Wu, P. & Fokin, V. V. (2005). J. Org. Chem. 70, 7761-7764.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO2

  • Mr = 255.31

  • Triclinic, [P \overline 1]

  • a = 5.8690 (11) Å

  • b = 10.9646 (19) Å

  • c = 11.481 (5) Å

  • α = 77.889 (2)°

  • β = 75.728 (5)°

  • γ = 80.262 (9)°

  • V = 694.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 4217 measured reflections

  • 2467 independent reflections

  • 2023 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.135

  • S = 1.14

  • 2467 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.93 2.48 2.811 (3) 101

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Isoxazoles are molecules of great interest in chemistry because many natural products have been synthesized starting from these ones (Melo, 2005), and also because these compounds exhibit diverse biological activities [i.e.antiprotozoalactivities (Patrick et al., 2007), Hsp90 superchaperone complex inhibitors (Taldone et al., 2008), tau aggregation inhibitors for treatment of Alzheimer's disease (Narlawar et al., 2008) Mycobacteriumtuberculosis pantothenate synthetase inhibitors (Velaparthi et al., 2008), and neuronal nicotinic acetylcholine receptors agonist (Rizzi et al., 2008)]. This compound was evaluated against acetilcholinesterase (AChE) enzyme, it showed moderate inhibitory activity toward AChE, with a IC50 of 2.16 mM. For these reasons, the synthesis and structure of isoxazole is still of great interest. We report here the crystal structure of the title compound, Fig.1. The planar isoxazole makes a dihedral angle of 14.85 (13)° with the 4-methoxyphenyl ring and 25.1 (3)° and 14.1 (3)° with the cyclohexene groups, respectively. The molecular structure is stabilized by one intramolecular C—H··· O hydrogen bond, Table 1.

Related literature top

For background to isoxazoles, see: Melo (2005). For their biological activities, see: Narlawar et al. (2008); Patrick et al. (2007); Taldone et al. (2008); Rizzi et al. (2008); Velaparthi et al. (2008). For synthetic details, see: Hansen et al. (2005).

Experimental top

Melting points were recorded on an Electrothermal 9100 instrument and are uncorrected; IR spectra were obtained on a Nicolet Nexus 470-FTIR spectrometer as potassium bromide pellets and are reported in wavenumbers (cm-1). 1H and 13C NMR spectra were measured on a Bruker AM-400 spectrometer (400 MHz), using CDCl3 assolvent. TMS was used as an internal standard. Chemical shifts (d) and J values are reported in p.p.m. and Hz, respectively. Reaction progress was monitored by means of thin-layer chromatography using Merck Kieselgel 60 (230–240 mesh). All reagents were purchased from Merck, Sigma and Aldrich Chemical Co. and used without further purification. Solvents were dried and distilled prior to use.

5-(1-cyclohexen-1-yl)-3-(4-methoxyphenyl)isoxazole was obtained using the method described by Hansen et al. (2005), starting from 4-methoxybenzaldehyde (2.72 g, 20 mmol), hydroxylamine hydrochloride (1.46 g, 21 mmol), chloramine-T trihydrate (5.9 g, 21 mmol) and 1-Ethynylcyclohexene (2.23 g,21 mmol) (See Fig. 2), giving off-white solid; mp 76–78 °C, yield 93%. Yellow block-shaped crystals of (I) suitable for X-ray analysis were grown from a hexane/EtOAc solution (1:1 v/v) at 298 K over a period of a few days. RMN-1H(CDCl3, 400 MHz): d 7,74 (d, J= 8.9 Hz, 2H); 6,96 (d, J= 8.9 Hz, 2H); 6,64 (m, 1H); 6,32 (s,1H); 3,85 (s, 1H); 2,37 (m, 2H); 2,26 (m, 2H); 1,77 (m, 2H); 1,69 (m, 2H). RMN-13C(CDCl3, 100 MHz): d 171.35, 161.99,160.83, 129.98, 128.07, 125.40, 121.98, 114.21, 95.93, 55.31, 25.39, 25.20,22.08, 21.70. F T–IR (KBr pellet, cm-1): 3851, 2935, 1652, 1525, 1430, 1248, 1177, 1030, 919.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93–0.97 Å and refined as riding model, with Uiso(H) = 1.2 or 1.5 times Ueq(C) for aromatic or methyl H atoms respectively. Atoms C3, C4 and hydrogen atoms bonded to C2 and C5 are severely disordered. They were modelled using a split model with refined population parameters [C3A/C3B = 0.474 (13)/0.526 (13); C4A/C4B = 0.474 (13)/0.526 (13); H2A/H2C= H2B/H2D = 0.474 (13)/0.526 (13); H5A/H5C=H5B/H5D = 0.474 (13)/0.526 (13)].

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular strucuture of (I) with 30% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii and intramolecular hydrogen bond is indicated by dotted lines. Atoms C3, C4 and hydrogen atoms bonded to C2 and C5 are severely disordered.
[Figure 2] Fig. 2. The formation of the title compound.
5-(1-Cyclohexen-1-yl)-3-(4-methoxyphenyl)isoxazole top
Crystal data top
C16H17NO2Z = 2
Mr = 255.31F(000) = 272
Triclinic, P1Dx = 1.221 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8690 (11) ÅCell parameters from 2123 reflections
b = 10.9646 (19) Åθ = 1.9–24.4°
c = 11.481 (5) ŵ = 0.08 mm1
α = 77.889 (2)°T = 295 K
β = 75.728 (5)°Block, yellow
γ = 80.262 (9)°0.20 × 0.16 × 0.10 mm
V = 694.7 (4) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
2023 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
Graphite monochromatorθmax = 25.2°, θmin = 3.6°
ϕ scans, and ω scans with κ offsetsh = 07
2467 measured reflectionsk = 1213
2467 independent reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.128P]
where P = (Fo2 + 2Fc2)/3
2467 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H17NO2γ = 80.262 (9)°
Mr = 255.31V = 694.7 (4) Å3
Triclinic, P1Z = 2
a = 5.8690 (11) ÅMo Kα radiation
b = 10.9646 (19) ŵ = 0.08 mm1
c = 11.481 (5) ÅT = 295 K
α = 77.889 (2)°0.20 × 0.16 × 0.10 mm
β = 75.728 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2023 reflections with I > 2σ(I)
2467 measured reflectionsRint = 0.076
2467 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.14Δρmax = 0.14 e Å3
2467 reflectionsΔρmin = 0.20 e Å3
192 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3554 (2)0.17491 (13)0.04016 (12)0.0640 (4)
O20.2921 (2)0.60615 (14)0.41851 (13)0.0715 (4)
N10.3139 (3)0.25243 (16)0.04881 (15)0.0628 (5)
C10.1547 (3)0.10166 (16)0.16684 (15)0.0495 (4)
C20.0473 (4)0.1345 (2)0.2317 (2)0.0690 (6)
H2A0.02720.21160.29070.083*0.474 (13)
H2B0.19620.14730.17340.083*0.474 (13)
H2C0.08550.22530.24710.083*0.526 (13)
H2D0.18540.09980.1780.083*0.526 (13)
C3A0.0493 (12)0.0236 (11)0.2981 (9)0.071 (2)0.474 (13)
H3A10.10430.04770.2380.106*0.474 (13)
H3A20.15880.04940.35230.106*0.474 (13)
C4A0.1966 (18)0.0159 (11)0.3718 (9)0.081 (2)0.474 (13)
H4A10.18850.07730.41990.121*0.474 (13)
H4A20.26070.05640.42660.121*0.474 (13)
C50.3446 (4)0.0697 (2)0.2859 (2)0.0758 (6)
H5A0.50790.08160.33030.091*0.474 (13)
H5B0.29980.15170.2450.091*0.474 (13)
H5C0.38180.15760.2520.091*0.526 (13)
H5D0.47110.04680.35560.091*0.526 (13)
C60.3280 (3)0.00944 (18)0.19162 (18)0.0607 (5)
H60.44660.0070.14760.073*
C70.1488 (3)0.17676 (16)0.07484 (15)0.0483 (4)
C80.0224 (3)0.25240 (16)0.01282 (15)0.0494 (4)
H80.17980.27160.01940.059*
C90.0881 (3)0.29654 (16)0.06460 (16)0.0475 (4)
C100.0167 (3)0.37884 (16)0.15521 (15)0.0470 (4)
C110.2372 (3)0.44858 (17)0.15767 (16)0.0534 (5)
H110.32150.44310.10060.064*
C120.3358 (3)0.52620 (17)0.24271 (17)0.0550 (5)
H120.48380.57260.2420.066*
C130.2127 (3)0.53436 (17)0.32878 (17)0.0539 (5)
C140.0074 (3)0.4641 (2)0.32840 (19)0.0650 (5)
H140.09030.46860.38640.078*
C150.1035 (3)0.38833 (19)0.24361 (18)0.0605 (5)
H150.25160.34220.24460.073*
C160.5130 (4)0.6839 (2)0.4212 (2)0.0756 (6)
H16A0.50460.74350.34640.113*
H16B0.54760.72790.48870.113*
H16C0.63590.63270.43030.113*
C3B0.0006 (13)0.0880 (9)0.3512 (8)0.0726 (19)0.526 (13)
H3B10.11380.13550.41240.087*0.526 (13)
H3B20.14480.09810.37990.087*0.526 (13)
C4B0.0995 (17)0.0499 (7)0.3290 (8)0.0731 (19)0.526 (13)
H4B10.12440.08330.40360.11*0.526 (13)
H4B20.01470.09610.2670.11*0.526 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0476 (7)0.0832 (9)0.0673 (9)0.0055 (6)0.0185 (6)0.0305 (7)
O20.0740 (9)0.0768 (9)0.0685 (9)0.0023 (7)0.0157 (7)0.0325 (8)
N10.0514 (9)0.0822 (11)0.0622 (10)0.0027 (8)0.0193 (7)0.0297 (9)
C10.0466 (10)0.0553 (10)0.0451 (10)0.0090 (8)0.0065 (7)0.0073 (8)
C20.0610 (12)0.0819 (14)0.0743 (14)0.0005 (10)0.0252 (10)0.0304 (12)
C3A0.062 (3)0.087 (6)0.075 (5)0.004 (3)0.027 (3)0.029 (4)
C4A0.079 (5)0.106 (6)0.063 (5)0.008 (4)0.010 (4)0.039 (4)
C50.0782 (14)0.0745 (14)0.0755 (15)0.0014 (11)0.0122 (12)0.0294 (12)
C60.0594 (11)0.0648 (12)0.0584 (12)0.0014 (9)0.0147 (9)0.0146 (10)
C70.0430 (9)0.0559 (10)0.0456 (10)0.0077 (7)0.0113 (7)0.0045 (8)
C80.0406 (9)0.0601 (11)0.0484 (10)0.0046 (7)0.0113 (7)0.0111 (8)
C90.0432 (9)0.0525 (10)0.0451 (10)0.0071 (7)0.0110 (7)0.0023 (8)
C100.0439 (9)0.0529 (10)0.0437 (10)0.0100 (7)0.0086 (7)0.0055 (8)
C110.0510 (10)0.0624 (11)0.0494 (11)0.0056 (8)0.0173 (8)0.0090 (9)
C120.0481 (10)0.0588 (11)0.0555 (11)0.0009 (8)0.0131 (8)0.0084 (9)
C130.0568 (11)0.0542 (11)0.0501 (11)0.0103 (8)0.0083 (8)0.0092 (9)
C140.0571 (11)0.0840 (14)0.0632 (13)0.0055 (10)0.0233 (9)0.0242 (11)
C150.0470 (10)0.0772 (13)0.0627 (13)0.0006 (9)0.0188 (9)0.0227 (10)
C160.0791 (14)0.0645 (13)0.0747 (15)0.0025 (11)0.0032 (11)0.0189 (11)
C3B0.090 (4)0.072 (4)0.066 (4)0.002 (3)0.035 (3)0.019 (3)
C4B0.087 (5)0.072 (4)0.067 (4)0.003 (3)0.020 (4)0.029 (3)
Geometric parameters (Å, º) top
O1—C71.362 (2)C5—H5D0.97
O1—N11.413 (2)C6—H60.93
O2—C131.370 (2)C7—C81.348 (2)
O2—C161.424 (2)C8—C91.420 (2)
N1—C91.313 (2)C8—H80.93
C1—C61.330 (2)C9—C101.472 (2)
C1—C71.460 (3)C10—C111.384 (2)
C1—C21.506 (3)C10—C151.400 (3)
C2—C3B1.509 (6)C11—C121.384 (2)
C2—C3A1.569 (7)C11—H110.93
C2—H2A0.97C12—C131.385 (3)
C2—H2B0.97C12—H120.93
C2—H2C0.97C13—C141.387 (3)
C2—H2D0.97C14—C151.366 (3)
C3A—C4A1.525 (13)C14—H140.93
C3A—H3A10.97C15—H150.93
C3A—H3A20.97C16—H16A0.96
C4A—C51.442 (9)C16—H16B0.96
C4A—H4A10.97C16—H16C0.96
C4A—H4A20.97C3B—C4B1.517 (12)
C5—C61.499 (3)C3B—H3B10.97
C5—C4B1.601 (8)C3B—H3B20.97
C5—H5A0.97C4B—H4B10.97
C5—H5B0.97C4B—H4B20.97
C5—H5C0.97
C7—O1—N1108.69 (13)C4B—C5—H5D109.6
C13—O2—C16118.24 (16)H5B—C5—H5D130.2
C9—N1—O1105.65 (13)H5C—C5—H5D108.1
C6—C1—C7121.93 (16)C1—C6—C5124.23 (19)
C6—C1—C2121.99 (18)C1—C6—H6117.9
C7—C1—C2116.08 (15)C5—C6—H6117.9
C1—C2—C3B114.7 (3)C8—C7—O1108.99 (15)
C1—C2—C3A108.3 (3)C8—C7—C1133.87 (16)
C1—C2—H2A110O1—C7—C1117.14 (15)
C3B—C2—H2A78C7—C8—C9105.51 (15)
C3A—C2—H2A110C7—C8—H8127.2
C1—C2—H2B110C9—C8—H8127.2
C3B—C2—H2B129.1N1—C9—C8111.14 (16)
C3A—C2—H2B110N1—C9—C10119.80 (15)
H2A—C2—H2B108.4C8—C9—C10129.05 (15)
C1—C2—H2C108.6C11—C10—C15117.38 (17)
C3B—C2—H2C108.6C11—C10—C9121.84 (15)
C3A—C2—H2C136.3C15—C10—C9120.78 (16)
H2B—C2—H2C77.8C12—C11—C10121.89 (16)
C1—C2—H2D108.6C12—C11—H11119.1
C3B—C2—H2D108.6C10—C11—H11119.1
C3A—C2—H2D81.5C11—C12—C13119.56 (16)
H2A—C2—H2D133C11—C12—H12120.2
H2C—C2—H2D107.6C13—C12—H12120.2
C4A—C3A—C2111.4 (8)O2—C13—C12125.20 (17)
C4A—C3A—H3A1109.3O2—C13—C14115.51 (16)
C2—C3A—H3A1109.3C12—C13—C14119.28 (18)
C4A—C3A—H3A2109.3C15—C14—C13120.63 (17)
C2—C3A—H3A2109.3C15—C14—H14119.7
H3A1—C3A—H3A2108C13—C14—H14119.7
C5—C4A—C3A107.3 (8)C14—C15—C10121.24 (18)
C5—C4A—H4A1110.3C14—C15—H15119.4
C3A—C4A—H4A1110.3C10—C15—H15119.4
C5—C4A—H4A2110.3O2—C16—H16A109.5
C3A—C4A—H4A2110.3O2—C16—H16B109.5
H4A1—C4A—H4A2108.5H16A—C16—H16B109.5
C4A—C5—C6113.5 (4)O2—C16—H16C109.5
C6—C5—C4B110.4 (3)H16A—C16—H16C109.5
C4A—C5—H5A108.9H16B—C16—H16C109.5
C6—C5—H5A108.9C2—C3B—C4B107.7 (7)
C4B—C5—H5A131.7C2—C3B—H3B1110.2
C4A—C5—H5B108.9C4B—C3B—H3B1110.2
C6—C5—H5B108.9C2—C3B—H3B2110.2
C4B—C5—H5B84.8C4B—C3B—H3B2110.2
H5A—C5—H5B107.7H3B1—C3B—H3B2108.5
C4A—C5—H5C128.3C3B—C4B—C5111.5 (7)
C6—C5—H5C109.6C3B—C4B—H4B1109.3
C4B—C5—H5C109.6C5—C4B—H4B1109.3
H5A—C5—H5C81.9C3B—C4B—H4B2109.3
C4A—C5—H5D83C5—C4B—H4B2109.3
C6—C5—H5D109.6H4B1—C4B—H4B2108
C7—O1—N1—C90.36 (19)C7—C8—C9—N11.2 (2)
C6—C1—C2—C3B19.4 (5)C7—C8—C9—C10177.85 (16)
C7—C1—C2—C3B160.8 (5)N1—C9—C10—C11166.10 (16)
C6—C1—C2—C3A15.2 (5)C8—C9—C10—C1114.9 (3)
C7—C1—C2—C3A164.6 (5)N1—C9—C10—C1514.6 (3)
C1—C2—C3A—C4A48.6 (11)C8—C9—C10—C15164.40 (18)
C3B—C2—C3A—C4A58.7 (9)C15—C10—C11—C120.8 (3)
C2—C3A—C4A—C566.8 (13)C9—C10—C11—C12179.88 (15)
C3A—C4A—C5—C648.4 (12)C10—C11—C12—C130.5 (3)
C3A—C4A—C5—C4B41.0 (10)C16—O2—C13—C123.3 (3)
C7—C1—C6—C5179.31 (18)C16—O2—C13—C14177.82 (17)
C2—C1—C6—C50.9 (3)C11—C12—C13—O2179.06 (16)
C4A—C5—C6—C116.8 (6)C11—C12—C13—C140.2 (3)
C4B—C5—C6—C113.1 (5)O2—C13—C14—C15179.53 (17)
N1—O1—C7—C80.39 (19)C12—C13—C14—C150.6 (3)
N1—O1—C7—C1179.91 (14)C13—C14—C15—C100.3 (3)
C6—C1—C7—C8162.0 (2)C11—C10—C15—C140.4 (3)
C2—C1—C7—C817.8 (3)C9—C10—C15—C14179.76 (17)
C6—C1—C7—O118.4 (2)C1—C2—C3B—C4B49.0 (10)
C2—C1—C7—O1161.79 (16)C3A—C2—C3B—C4B36.8 (7)
O1—C7—C8—C90.93 (19)C2—C3B—C4B—C561.8 (11)
C1—C7—C8—C9179.44 (18)C4A—C5—C4B—C3B57.8 (11)
O1—N1—C9—C81.0 (2)C6—C5—C4B—C3B44.2 (10)
O1—N1—C9—C10178.20 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.482.811 (3)101

Experimental details

Crystal data
Chemical formulaC16H17NO2
Mr255.31
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.8690 (11), 10.9646 (19), 11.481 (5)
α, β, γ (°)77.889 (2), 75.728 (5), 80.262 (9)
V3)694.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2467, 2467, 2023
Rint0.076
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.14
No. of reflections2467
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.20

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.482.811 (3)101
 

Acknowledgements

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHansen, T. V., Wu, P. & Fokin, V. V. (2005). J. Org. Chem. 70, 7761–7764.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMelo, T. (2005). Curr. Org. Chem. 9, 925–958.  Google Scholar
First citationNarlawar, R., Pickhardt, M., Leuchtenberger, S., Baumann, K., Krause, S., Dyrks, T., Weggen, S., Mandelkow, E. & Schmidt, B. (2008). Chem. Med. Chem. 3, 165–172.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatrick, D. A., Bakunov, S. A., Bakunova, S. M., Kumar, E., Lombardy, R. J., Jones, S. K., Bridges, A. S., Zhirnov, O., Hall, J. E., Wenzler, T., Brun, R. & Tidwell, R. R. (2007). J. Med. Chem. 50, 2468–2485.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRizzi, L., Dallanoce, C., Matera, C., Magrone, P., Pucci, L., Gotti, C., Clementi, F. & De Amici, M. (2008). Bioorg. Med. Chem. Lett. 18, 4651–4654.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaldone, T., Gozman, A., Maharaj, R. & Chiosis, G. (2008). Curr. Opin. Pharmacol. 8, 370–374.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVelaparthi, S., Brunsteiner, M., Uddin, R., Wan, B. J., Franzblau, S. G. & Petukhov, P. A. (2008). J. Med. Chem. 51, 1999–2002.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds