organic compounds
1,1′-[2,3,5,6-Tetramethyl-p-phenylenebis(methyleneoxy)]di-1H-benzotriazole
aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamilnadu, India, bDepartment of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India, and cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com
The complete molecule of the title compound, C24H24N6O2, is generated by a crystallographic inversion centre. The benzotriazole rings form dihedral angles of 2.10 (7)° with the central aromatic ring. The crystal packing is consolidated by π–π interactions, with centroid–centroid distances of 3.6234 (10) Å, together with weak C—H⋯π interactions.
Related literature
For the biological activity of N-oxide and benzotriazole derivatives see: Katarzyna et al.(2005); Sarala et al. (2007). For applications of benzotriazole, see: Kopec et al. (2008); Krawczyk & Gdaniec (2005); Smith et al. (2001); Sha et al. (1996). For 1-hydroxybenzotriazole, see: Anderson et al. (1963); Bosch et al. (1983).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: CORINC (Draeger & Gattow, 1971); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809010782/bt2912sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809010782/bt2912Isup2.hkl
A mixture of 1,4-bis(bromomethyl)-2,3,5,6-tetramethyl-benzene (0.320 g, 1 mmol) and sodium salt of 1-hydroxybenzotriazole (0.314 2 mmol) in ethanol (10 ml) was heated at 333 K with stirring for 30 min. The product formed was filtered off and dried. The product was dissolved in ethanol and on slow evaporation crystals suitable for x-ray diffraction are obtained.
All the H atoms were positioned geometrically (Caromatic—H=0.95 Å, Cmethyl—H=0.98 or Cmethylene—H=0.99 Å) and refined using a riding model with, Uiso(H)=1.2Ueq(C) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: CORINC (Draeger & Gattow, 1971); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C24H24N6O2 | F(000) = 452 |
Mr = 428.49 | Dx = 1.355 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 9.3895 (6) Å | θ = 65–70° |
b = 7.5960 (2) Å | µ = 0.73 mm−1 |
c = 15.7471 (13) Å | T = 193 K |
β = 110.770 (3)° | Block, colourless |
V = 1050.13 (11) Å3 | 0.51 × 0.26 × 0.19 mm |
Z = 2 |
Enraf–Nonius CAD-4 diffractometer | 1905 reflections with I > 2σ(I) |
Radiation source: rotating anode | Rint = 0.026 |
Graphite monochromator | θmax = 70.0°, θmin = 5.0° |
ω/2θ scans | h = −11→10 |
Absorption correction: ψ scan (CORINC; Draeger & Gattow, 1971) | k = 0→9 |
Tmin = 0.707, Tmax = 0.873 | l = 0→19 |
2075 measured reflections | 3 standard reflections every 60 min |
1996 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0832P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3 |
1996 reflections | (Δ/σ)max < 0.001 |
147 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C24H24N6O2 | V = 1050.13 (11) Å3 |
Mr = 428.49 | Z = 2 |
Monoclinic, P21/c | Cu Kα radiation |
a = 9.3895 (6) Å | µ = 0.73 mm−1 |
b = 7.5960 (2) Å | T = 193 K |
c = 15.7471 (13) Å | 0.51 × 0.26 × 0.19 mm |
β = 110.770 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1905 reflections with I > 2σ(I) |
Absorption correction: ψ scan (CORINC; Draeger & Gattow, 1971) | Rint = 0.026 |
Tmin = 0.707, Tmax = 0.873 | 3 standard reflections every 60 min |
2075 measured reflections | intensity decay: 1% |
1996 independent reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.32 e Å−3 |
1996 reflections | Δρmin = −0.33 e Å−3 |
147 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.25022 (16) | −0.07614 (18) | 0.47932 (9) | 0.0302 (3) | |
N2 | 0.17398 (19) | −0.1201 (2) | 0.53429 (10) | 0.0385 (4) | |
N3 | 0.08837 (19) | −0.2555 (2) | 0.49841 (11) | 0.0408 (4) | |
C4 | 0.10897 (19) | −0.2985 (2) | 0.41828 (12) | 0.0317 (4) | |
C5 | 0.0438 (2) | −0.4308 (2) | 0.35473 (14) | 0.0396 (4) | |
H5 | −0.0276 | −0.5118 | 0.3627 | 0.047* | |
C6 | 0.0873 (2) | −0.4389 (3) | 0.28015 (13) | 0.0408 (5) | |
H6 | 0.0438 | −0.5264 | 0.2353 | 0.049* | |
C7 | 0.1948 (2) | −0.3209 (2) | 0.26842 (12) | 0.0380 (4) | |
H7 | 0.2212 | −0.3309 | 0.2157 | 0.046* | |
C8 | 0.26238 (19) | −0.1922 (2) | 0.33068 (12) | 0.0321 (4) | |
H8 | 0.3367 | −0.1146 | 0.3235 | 0.039* | |
C9 | 0.21514 (17) | −0.1820 (2) | 0.40554 (11) | 0.0270 (4) | |
O10 | 0.34983 (13) | 0.06259 (15) | 0.50086 (8) | 0.0317 (3) | |
C11 | 0.27184 (18) | 0.2246 (2) | 0.45748 (11) | 0.0296 (4) | |
H11A | 0.1907 | 0.2561 | 0.4812 | 0.036* | |
H11B | 0.2253 | 0.2087 | 0.3909 | 0.036* | |
C12 | 0.39164 (17) | 0.3661 (2) | 0.48003 (10) | 0.0248 (4) | |
C13 | 0.47071 (18) | 0.3997 (2) | 0.42060 (10) | 0.0259 (4) | |
C14 | 0.42305 (17) | 0.4639 (2) | 0.55983 (10) | 0.0255 (4) | |
C15 | 0.4428 (2) | 0.2893 (2) | 0.33658 (12) | 0.0381 (4) | |
H15A | 0.3797 | 0.3554 | 0.2830 | 0.057* | |
H15B | 0.3901 | 0.1806 | 0.3416 | 0.057* | |
H15C | 0.5404 | 0.2601 | 0.3305 | 0.057* | |
C16 | 0.3446 (2) | 0.4206 (3) | 0.62620 (13) | 0.0397 (5) | |
H16A | 0.4183 | 0.4283 | 0.6884 | 0.060* | |
H16B | 0.3032 | 0.3009 | 0.6147 | 0.060* | |
H16C | 0.2616 | 0.5044 | 0.6185 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0380 (7) | 0.0273 (7) | 0.0337 (7) | −0.0030 (6) | 0.0229 (6) | 0.0022 (5) |
N2 | 0.0543 (9) | 0.0351 (8) | 0.0403 (8) | −0.0001 (7) | 0.0344 (7) | 0.0050 (6) |
N3 | 0.0532 (9) | 0.0338 (8) | 0.0513 (9) | −0.0041 (7) | 0.0383 (8) | 0.0039 (7) |
C4 | 0.0330 (8) | 0.0285 (8) | 0.0417 (9) | 0.0010 (6) | 0.0231 (7) | 0.0057 (7) |
C5 | 0.0331 (9) | 0.0320 (9) | 0.0582 (12) | −0.0044 (7) | 0.0219 (8) | −0.0012 (8) |
C6 | 0.0381 (10) | 0.0375 (10) | 0.0450 (10) | 0.0005 (7) | 0.0124 (8) | −0.0077 (8) |
C7 | 0.0462 (10) | 0.0399 (10) | 0.0335 (9) | 0.0059 (8) | 0.0208 (8) | 0.0008 (7) |
C8 | 0.0380 (9) | 0.0308 (9) | 0.0360 (9) | 0.0012 (7) | 0.0234 (7) | 0.0045 (7) |
C9 | 0.0304 (8) | 0.0251 (8) | 0.0304 (8) | 0.0025 (6) | 0.0170 (6) | 0.0044 (6) |
O10 | 0.0343 (6) | 0.0260 (6) | 0.0382 (7) | −0.0022 (5) | 0.0170 (5) | 0.0013 (5) |
C11 | 0.0316 (8) | 0.0272 (8) | 0.0344 (8) | 0.0003 (6) | 0.0171 (7) | 0.0021 (6) |
C12 | 0.0304 (7) | 0.0243 (8) | 0.0253 (7) | 0.0010 (6) | 0.0170 (6) | 0.0016 (6) |
C13 | 0.0354 (8) | 0.0266 (8) | 0.0223 (7) | 0.0033 (6) | 0.0184 (6) | 0.0001 (6) |
C14 | 0.0325 (8) | 0.0284 (8) | 0.0241 (7) | 0.0040 (6) | 0.0204 (6) | 0.0037 (6) |
C15 | 0.0540 (11) | 0.0389 (10) | 0.0312 (9) | −0.0041 (8) | 0.0272 (8) | −0.0091 (7) |
C16 | 0.0553 (11) | 0.0421 (10) | 0.0386 (9) | −0.0027 (8) | 0.0375 (9) | 0.0024 (8) |
N1—N2 | 1.3465 (18) | C11—C12 | 1.504 (2) |
N1—C9 | 1.354 (2) | C11—H11A | 0.9900 |
N1—O10 | 1.3694 (17) | C11—H11B | 0.9900 |
N2—N3 | 1.304 (2) | C12—C14 | 1.399 (2) |
N3—C4 | 1.382 (2) | C12—C13 | 1.409 (2) |
C4—C5 | 1.397 (3) | C13—C14i | 1.394 (2) |
C4—C9 | 1.400 (2) | C13—C15 | 1.509 (2) |
C5—C6 | 1.375 (3) | C14—C13i | 1.394 (2) |
C5—H5 | 0.9500 | C14—C16 | 1.5129 (19) |
C6—C7 | 1.410 (3) | C15—H15A | 0.9800 |
C6—H6 | 0.9500 | C15—H15B | 0.9800 |
C7—C8 | 1.370 (3) | C15—H15C | 0.9800 |
C7—H7 | 0.9500 | C16—H16A | 0.9800 |
C8—C9 | 1.401 (2) | C16—H16B | 0.9800 |
C8—H8 | 0.9500 | C16—H16C | 0.9800 |
O10—C11 | 1.4707 (19) | ||
N2—N1—C9 | 112.41 (14) | C12—C11—H11A | 110.5 |
N2—N1—O10 | 120.24 (13) | O10—C11—H11B | 110.5 |
C9—N1—O10 | 127.34 (13) | C12—C11—H11B | 110.5 |
N3—N2—N1 | 107.67 (14) | H11A—C11—H11B | 108.7 |
N2—N3—C4 | 108.54 (14) | C14—C12—C13 | 120.49 (15) |
N3—C4—C5 | 131.05 (16) | C14—C12—C11 | 119.57 (14) |
N3—C4—C9 | 108.58 (15) | C13—C12—C11 | 119.94 (14) |
C5—C4—C9 | 120.37 (16) | C14i—C13—C12 | 119.49 (14) |
C6—C5—C4 | 117.17 (16) | C14i—C13—C15 | 119.67 (14) |
C6—C5—H5 | 121.4 | C12—C13—C15 | 120.84 (15) |
C4—C5—H5 | 121.4 | C13i—C14—C12 | 119.98 (13) |
C5—C6—C7 | 121.79 (17) | C13i—C14—C16 | 119.62 (14) |
C5—C6—H6 | 119.1 | C12—C14—C16 | 120.38 (15) |
C7—C6—H6 | 119.1 | C13—C15—H15A | 109.5 |
C8—C7—C6 | 122.08 (16) | C13—C15—H15B | 109.5 |
C8—C7—H7 | 119.0 | H15A—C15—H15B | 109.5 |
C6—C7—H7 | 119.0 | C13—C15—H15C | 109.5 |
C7—C8—C9 | 115.90 (15) | H15A—C15—H15C | 109.5 |
C7—C8—H8 | 122.1 | H15B—C15—H15C | 109.5 |
C9—C8—H8 | 122.1 | C14—C16—H16A | 109.5 |
N1—C9—C4 | 102.80 (14) | C14—C16—H16B | 109.5 |
N1—C9—C8 | 134.53 (15) | H16A—C16—H16B | 109.5 |
C4—C9—C8 | 122.67 (16) | C14—C16—H16C | 109.5 |
N1—O10—C11 | 110.19 (11) | H16A—C16—H16C | 109.5 |
O10—C11—C12 | 106.29 (12) | H16B—C16—H16C | 109.5 |
O10—C11—H11A | 110.5 | ||
C9—N1—N2—N3 | 0.3 (2) | C5—C4—C9—C8 | −0.7 (3) |
O10—N1—N2—N3 | −179.78 (14) | C7—C8—C9—N1 | −178.85 (17) |
N1—N2—N3—C4 | −0.5 (2) | C7—C8—C9—C4 | 1.9 (2) |
N2—N3—C4—C5 | −179.59 (18) | N2—N1—O10—C11 | −92.95 (16) |
N2—N3—C4—C9 | 0.5 (2) | C9—N1—O10—C11 | 86.90 (18) |
N3—C4—C5—C6 | 179.40 (18) | N1—O10—C11—C12 | −176.52 (11) |
C9—C4—C5—C6 | −0.7 (3) | O10—C11—C12—C14 | −88.45 (17) |
C4—C5—C6—C7 | 0.9 (3) | O10—C11—C12—C13 | 91.90 (16) |
C5—C6—C7—C8 | 0.3 (3) | C14—C12—C13—C14i | −2.3 (3) |
C6—C7—C8—C9 | −1.6 (3) | C11—C12—C13—C14i | 177.30 (13) |
N2—N1—C9—C4 | −0.03 (18) | C14—C12—C13—C15 | 177.14 (15) |
O10—N1—C9—C4 | −179.88 (14) | C11—C12—C13—C15 | −3.2 (2) |
N2—N1—C9—C8 | −179.42 (18) | C13—C12—C14—C13i | 2.4 (3) |
O10—N1—C9—C8 | 0.7 (3) | C11—C12—C14—C13i | −177.29 (13) |
N3—C4—C9—N1 | −0.29 (18) | C13—C12—C14—C16 | −176.44 (15) |
C5—C4—C9—N1 | 179.80 (15) | C11—C12—C14—C16 | 3.9 (2) |
N3—C4—C9—C8 | 179.20 (15) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···Cg2ii | 0.95 | 2.82 | 3.700 (2) | 154 |
Symmetry code: (ii) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C24H24N6O2 |
Mr | 428.49 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 9.3895 (6), 7.5960 (2), 15.7471 (13) |
β (°) | 110.770 (3) |
V (Å3) | 1050.13 (11) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.73 |
Crystal size (mm) | 0.51 × 0.26 × 0.19 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (CORINC; Draeger & Gattow, 1971) |
Tmin, Tmax | 0.707, 0.873 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2075, 1996, 1905 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.147, 1.10 |
No. of reflections | 1996 |
No. of parameters | 147 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.33 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CORINC (Draeger & Gattow, 1971), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···Cg2i | 0.95 | 2.82 | 3.700 (2) | 154 |
Symmetry code: (i) −x, y−1/2, −z+1/2. |
References
Anderson, G. W., Zimmerman, J. E. & Calahan, F. M. (1963). J. Am. Chem. Soc. 85, 3039–3039. CrossRef CAS Web of Science Google Scholar
Bosch, R., Jung, G. & Winter, W. (1983). Acta Cryst. C39, 1089–1092. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Draeger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762. CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Katarzyna, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2005). Bioorg. Med. Chem. 13, 3601–3616. Google Scholar
Kopec, E. A., Zwolska, Z. & Kazimierczuk, A. O. Z. (2008). Acta Pol. Pharm. Drug Res. 65, 435–439. Google Scholar
Krawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o2967–o2969. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarala, G., Swamy, S. N., Prabhuswamy, B., Andalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2007). Anal. Sci. 23, 25–26. Web of Science PubMed Google Scholar
Sha, G., Wang, W. & Ren, T. (1996). Mocha Xuebao, 16, 344–350. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Bottle, S. E., Reid, D. A., Schweinsberg, D. P. & Bott, R. C. (2001). Acta Cryst. E57, o531–o532. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzotriazole derivatives show biological activities such as anti-inflammatory, diuretic, antiviral and antihypertensive agents (Katarzyna et al., 2005; Sarala et al., 2007). It is used as a corrosion inhibitor, antifreeze agent, ultraviolet light stabilizer for plastics and as an antifoggant in photography (Krawczyk & Gdaniec, 2005; Smith et al., 2001). N-aryloxy derivatives of benzotriazoles have antimycobacterial activity (Kopec et al., 2008). Benzotriazole possessing three vicinal N atoms, is used as an antifouling and antiwear reagent (Sha et al., 1996). 1-Hydroxybenzotriazole is widely being used as a reagent for peptide synthesis (Anderson et al., 1963). The crystal structure of benzotriazole 1-oxide has been reported (Bosch et al., 1983). Due to the above mentioned applications of benzotriazole we have synthesized and report here the crystal structure of the title compound (I).
The asymmetric unit of (I) comprises of half molecule of the title compound (Fig. 1), the other half is symmetry generated [symmetry code: 1 - x,1 - y,1 - z]. The benzotriazole ring is essentially planar with the maximum deviation from planarity being 0.015 (18) Å for atom C8. The mean plane of the benzotriazole rings (N1—N3/C4—C9; N1A—N3A/C4A—C9A) forming a dihedral angles of 2.10 (7)° and 2.09 (7)° respectively, with the phenyl ring (C12 - C14/C12A-C14A), indicating that all the three are almost coplanar.
The crystal packing (Fig.2) is stabilized by π—π stacking interactions [Cg2—Cg3i= 3.6234 (10) Å; Cg2: (C4—C9); Cg3:(C12—C14/C12A—C14A): Symmetry code: (i) x, -1 + y, z]; [Cg2—Cg3ii= 3.6234 (10) Å; Cg2: (C4—C9); Cg3:(C12—C14/C12A—C14A): Symmetry code: (ii) 1 - x, -y,1 - z] together with weak C—H···π interactions. (Fig.2).