organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Bromo­phen­yl)imino­meth­yl]-3,5-di­meth­oxy­phenol

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: ikilic@omu.edu.tr

(Received 26 March 2009; accepted 27 March 2009; online 31 March 2009)

There are two independent mol­ecules in the asymmetric unit of the title compound, C15H14BrNO3, with very similar geometrical parameters. Each mol­ecule adopts the phenol–imine tautomeric form, with strong intra­molecular O—H⋯N hydrogen bonds. The two mol­ecules are non-planar, the dihedral angles between the two aromatic rings being are 24.6 (2) and 30.30 (13)°.

Related literature

For bond-length data, see: Petek et al. (2007[Petek, H., Albayrak, Ç., Ağar, E., Ískeleli, N. O. & Şenel, İ. (2007). Acta Cryst. E63, o810-o812.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14BrNO3

  • Mr = 336.18

  • Triclinic, [P \overline 1]

  • a = 8.2655 (5) Å

  • b = 9.7305 (6) Å

  • c = 18.3806 (11) Å

  • α = 97.177 (5)°

  • β = 92.796 (5)°

  • γ = 106.214 (5)°

  • V = 1402.94 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.94 mm−1

  • T = 296 K

  • 0.67 × 0.38 × 0.09 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.421, Tmax = 0.839

  • 20096 measured reflections

  • 5514 independent reflections

  • 3901 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.112

  • S = 1.02

  • 5514 reflections

  • 369 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.97 (5) 1.69 (5) 2.564 (4) 149 (5)
O4—H4⋯N2 0.83 (5) 1.80 (5) 2.564 (4) 150 (5)

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The extensive application of Schiff bases in industry and in analytical determinations has attracted attention for decades. The overall behaviour of these compounds has been ascribed to a proton-transfer reaction between a phenol-imine and a keto-amine tautomer. It is claimed that phenol-imine tautomerism is dominant in salicylaldimine, while the keto-amine form is preferred in naphthaldimine Schiff bases, depending on the solvent polarities. Our X-ray investigation of the title compound has indicated that the phenol-imine tautomer is favoured over the keto-amine tautomer.

An ORTEP view of the molecule is shown in Fig. 1. There are two independent molecules in the asymmetric unit which have very similar geometrical parameters. Both molecules adopt the phenol-imine tautomeric form and have a strong intramolecular O—H···N hydrogen bond whose details are given in Table 1. The C7—N1 [1.296 (4) Å] and C22—N2 [1.296 (4) Å] bond distances are of double-bond character, whereas, the C2—O1 [1.344 (4) Å] and C17—O4 [1.342 (4) Å] distances are single bonds. These distances are similar to other values reported in the literature [1.2889 (15) and 1.2891 (14) Å for C=N and 1.3486 (16) and 1.3443 (15) Å for C—O, respectively; Petek et al. (2007)]. Both molecules are not planar; the dihedral angle between the aromatic rings are 24.6 (2) and 30.30 (13) °, respectively.

Related literature top

For bond-length data, see: Petek et al. (2007).

Experimental top

2-(4-Bromophenylimino)methyl-3,5-dimethoxyphenol was prepared by reflux a mixture of a solution containing 2-hydroxy-4, 6-dimethoxybenzaldehyde (0.02 g 0.11 mmol) in 20 ml ethanol and a solution containing 4-bromoaniline (0.019 g 0.11 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 hunder reflux. Crystals of 2-(4-Bromophenylimino)methyl-3,5-dimethoxyphenol suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 69; m.p.380–382 K).

Refinement top

All H atoms bonded to C were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.93 and 0.96 Å for Camoatic-H or CmethylH, respectively. The displacement parameters of the H atoms were constrained as Uiso(H) = 1.2Ueq(Caromatic) or 1.5Ueq(Cmethyl). The positions of the hydroxyl H atoms were obtained from an electron density difference map and were refined freely.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level Dashed lines indicate intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines indicate intramolecular hydrogen bond.
2-[(4-Bromophenyl)iminomethyl]-3,5-dimethoxyphenol top
Crystal data top
C15H14BrNO3Z = 4
Mr = 336.18F(000) = 680
Triclinic, P1Dx = 1.592 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2655 (5) ÅCell parameters from 26370 reflections
b = 9.7305 (6) Åθ = 2.2–29.8°
c = 18.3806 (11) ŵ = 2.94 mm1
α = 97.177 (5)°T = 296 K
β = 92.796 (5)°Plate, yellow
γ = 106.214 (5)°0.67 × 0.38 × 0.09 mm
V = 1402.94 (15) Å3
Data collection top
Stoe IPDS-2
diffractometer
5514 independent reflections
Radiation source: fine-focus sealed tube3901 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.080
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.2°
rotation method scansh = 1010
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 1212
Tmin = 0.421, Tmax = 0.839l = 2222
20096 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0586P)2]
where P = (Fo2 + 2Fc2)/3
5514 reflections(Δ/σ)max = 0.001
369 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
C15H14BrNO3γ = 106.214 (5)°
Mr = 336.18V = 1402.94 (15) Å3
Triclinic, P1Z = 4
a = 8.2655 (5) ÅMo Kα radiation
b = 9.7305 (6) ŵ = 2.94 mm1
c = 18.3806 (11) ÅT = 296 K
α = 97.177 (5)°0.67 × 0.38 × 0.09 mm
β = 92.796 (5)°
Data collection top
Stoe IPDS-2
diffractometer
5514 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
3901 reflections with I > 2σ(I)
Tmin = 0.421, Tmax = 0.839Rint = 0.080
20096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.61 e Å3
5514 reflectionsΔρmin = 0.92 e Å3
369 parameters
Special details top

Experimental. 360 frames, detector distance = 100 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.862 (6)0.544 (5)0.509 (3)0.086 (15)*
H40.128 (6)0.946 (5)0.005 (3)0.079 (15)*
C10.6535 (4)0.6668 (4)0.50157 (19)0.0470 (8)
C20.7277 (5)0.6064 (4)0.4429 (2)0.0542 (9)
C30.6849 (5)0.6161 (5)0.3700 (2)0.0581 (10)
H30.73310.57350.33210.070*
C40.5703 (5)0.6897 (4)0.3547 (2)0.0555 (9)
C50.4951 (5)0.7517 (4)0.4110 (2)0.0581 (10)
H50.41810.80140.39990.070*
C60.5340 (5)0.7397 (4)0.4822 (2)0.0525 (9)
C70.6914 (4)0.6516 (4)0.5757 (2)0.0486 (8)
H70.63510.68850.61240.058*
C80.8394 (4)0.5718 (4)0.66721 (19)0.0460 (8)
C90.8251 (4)0.6672 (4)0.7279 (2)0.0506 (9)
H90.78700.74640.72100.061*
C100.8666 (5)0.6459 (4)0.7981 (2)0.0503 (9)
H100.85730.71030.83840.060*
C110.9221 (4)0.5282 (4)0.80813 (19)0.0480 (8)
C120.9410 (4)0.4343 (4)0.7486 (2)0.0499 (9)
H120.98090.35620.75580.060*
C130.9008 (5)0.4565 (4)0.6792 (2)0.0522 (9)
H130.91450.39360.63910.063*
C140.5657 (6)0.6265 (6)0.2249 (2)0.0751 (12)
H14A0.52510.65140.18000.113*
H14B0.51400.52570.22690.113*
H14C0.68630.64510.22640.113*
C150.3157 (6)0.8384 (6)0.5262 (3)0.0840 (16)
H15A0.28000.87510.57160.126*
H15B0.22740.75620.50210.126*
H15C0.33940.91230.49490.126*
C160.3436 (4)0.8322 (4)0.00258 (19)0.0472 (8)
C170.2508 (5)0.8723 (4)0.0580 (2)0.0493 (9)
C180.2770 (5)0.8456 (4)0.1320 (2)0.0534 (9)
H180.21470.87360.16790.064*
C190.3969 (5)0.7772 (4)0.1511 (2)0.0525 (9)
C200.4941 (5)0.7381 (4)0.0976 (2)0.0567 (10)
H200.57610.69360.11140.068*
C210.4692 (5)0.7651 (4)0.0252 (2)0.0506 (9)
C220.3103 (5)0.8518 (4)0.0720 (2)0.0495 (9)
H220.37420.82280.10690.059*
C230.1593 (5)0.9256 (4)0.16780 (19)0.0485 (8)
C240.2798 (5)0.9472 (4)0.2266 (2)0.0543 (9)
H240.39050.95080.21760.065*
C250.2378 (5)0.9636 (4)0.2982 (2)0.0539 (9)
H250.31970.97920.33720.065*
C260.0739 (5)0.9566 (4)0.31126 (19)0.0511 (9)
C270.0479 (5)0.9373 (4)0.2532 (2)0.0528 (9)
H270.15830.93470.26240.063*
C280.0043 (5)0.9220 (4)0.1826 (2)0.0523 (9)
H280.08600.90890.14380.063*
C290.3267 (6)0.7663 (5)0.2796 (2)0.0694 (12)
H29A0.36240.73420.32600.104*
H29B0.33820.86800.27550.104*
H29C0.21060.71430.27660.104*
C300.6916 (6)0.6705 (6)0.0127 (3)0.0811 (15)
H30A0.74150.64830.05630.122*
H30B0.77530.74070.00830.122*
H30C0.64990.58410.02230.122*
Br10.97872 (6)0.49642 (5)0.90475 (2)0.06820 (16)
Br20.01410 (7)0.97819 (6)0.40896 (2)0.07682 (18)
N10.8025 (4)0.5876 (3)0.59359 (16)0.0525 (8)
N20.1932 (4)0.9090 (3)0.09355 (16)0.0516 (7)
O10.8425 (4)0.5365 (4)0.45644 (17)0.0749 (9)
O20.5240 (4)0.7113 (3)0.28614 (15)0.0706 (8)
O30.4661 (4)0.7956 (4)0.54100 (15)0.0725 (9)
O40.1272 (4)0.9326 (3)0.04128 (16)0.0646 (8)
O50.4290 (4)0.7403 (3)0.22137 (15)0.0656 (7)
O60.5547 (3)0.7280 (3)0.03109 (15)0.0675 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0424 (19)0.048 (2)0.053 (2)0.0165 (18)0.0015 (15)0.0110 (16)
C20.052 (2)0.057 (2)0.059 (2)0.022 (2)0.0009 (17)0.0162 (18)
C30.057 (2)0.070 (3)0.054 (2)0.028 (2)0.0059 (17)0.0131 (19)
C40.052 (2)0.062 (2)0.052 (2)0.014 (2)0.0013 (17)0.0146 (18)
C50.058 (2)0.063 (2)0.060 (2)0.029 (2)0.0084 (18)0.0120 (19)
C60.051 (2)0.056 (2)0.055 (2)0.025 (2)0.0042 (17)0.0076 (18)
C70.045 (2)0.051 (2)0.0513 (19)0.0163 (18)0.0007 (15)0.0080 (16)
C80.0403 (19)0.049 (2)0.0529 (19)0.0173 (17)0.0007 (15)0.0138 (16)
C90.049 (2)0.050 (2)0.060 (2)0.0242 (19)0.0024 (16)0.0118 (17)
C100.051 (2)0.049 (2)0.056 (2)0.0240 (19)0.0046 (16)0.0070 (17)
C110.0424 (19)0.052 (2)0.0510 (19)0.0137 (18)0.0001 (15)0.0143 (17)
C120.048 (2)0.049 (2)0.060 (2)0.0255 (18)0.0012 (16)0.0111 (17)
C130.051 (2)0.053 (2)0.058 (2)0.0256 (19)0.0006 (17)0.0040 (17)
C140.080 (3)0.094 (3)0.050 (2)0.025 (3)0.004 (2)0.010 (2)
C150.088 (3)0.111 (4)0.079 (3)0.070 (3)0.005 (3)0.016 (3)
C160.0422 (19)0.046 (2)0.056 (2)0.0186 (18)0.0043 (16)0.0053 (16)
C170.048 (2)0.050 (2)0.055 (2)0.0199 (19)0.0128 (16)0.0100 (17)
C180.051 (2)0.062 (2)0.055 (2)0.025 (2)0.0101 (17)0.0151 (18)
C190.051 (2)0.056 (2)0.053 (2)0.0180 (19)0.0119 (17)0.0084 (17)
C200.046 (2)0.063 (2)0.067 (2)0.026 (2)0.0131 (18)0.0062 (19)
C210.045 (2)0.051 (2)0.058 (2)0.0183 (19)0.0055 (16)0.0055 (17)
C220.049 (2)0.044 (2)0.057 (2)0.0160 (18)0.0039 (17)0.0079 (16)
C230.058 (2)0.0421 (19)0.0480 (19)0.0199 (19)0.0047 (16)0.0058 (15)
C240.048 (2)0.058 (2)0.059 (2)0.020 (2)0.0014 (17)0.0056 (18)
C250.059 (2)0.058 (2)0.048 (2)0.024 (2)0.0044 (17)0.0058 (17)
C260.070 (3)0.045 (2)0.0426 (18)0.025 (2)0.0040 (17)0.0030 (15)
C270.052 (2)0.062 (2)0.051 (2)0.031 (2)0.0032 (16)0.0036 (17)
C280.052 (2)0.056 (2)0.056 (2)0.030 (2)0.0013 (17)0.0026 (17)
C290.071 (3)0.092 (3)0.050 (2)0.032 (3)0.0124 (19)0.006 (2)
C300.073 (3)0.104 (4)0.084 (3)0.059 (3)0.002 (2)0.002 (3)
Br10.0863 (3)0.0739 (3)0.0528 (2)0.0335 (3)0.0004 (2)0.0194 (2)
Br20.0908 (4)0.0951 (4)0.0472 (2)0.0325 (3)0.0114 (2)0.0046 (2)
N10.0512 (18)0.0610 (19)0.0530 (17)0.0257 (16)0.0020 (14)0.0166 (15)
N20.0568 (19)0.0546 (18)0.0509 (17)0.0273 (17)0.0082 (14)0.0085 (14)
O10.081 (2)0.106 (2)0.0632 (18)0.066 (2)0.0106 (15)0.0200 (17)
O20.078 (2)0.091 (2)0.0512 (15)0.0359 (18)0.0052 (13)0.0183 (15)
O30.0772 (19)0.103 (2)0.0572 (16)0.0624 (19)0.0024 (14)0.0064 (15)
O40.0738 (19)0.088 (2)0.0530 (16)0.0548 (18)0.0112 (14)0.0130 (15)
O50.0667 (17)0.085 (2)0.0554 (16)0.0364 (17)0.0178 (13)0.0085 (14)
O60.0665 (18)0.088 (2)0.0644 (17)0.0503 (17)0.0023 (13)0.0079 (15)
Geometric parameters (Å, º) top
C1—C21.412 (5)C16—C221.412 (5)
C1—C71.418 (5)C16—C211.425 (5)
C1—C61.424 (4)C17—O41.342 (4)
C2—O11.344 (4)C17—C181.392 (5)
C2—C31.390 (5)C18—C191.376 (5)
C3—C41.375 (5)C18—H180.9300
C3—H30.9300C19—O51.356 (4)
C4—O21.358 (4)C19—C201.394 (5)
C4—C51.392 (5)C20—C211.361 (5)
C5—C61.358 (5)C20—H200.9300
C5—H50.9300C21—O61.366 (4)
C6—O31.365 (4)C22—N21.299 (4)
C7—N11.296 (4)C22—H220.9300
C7—H70.9300C23—C281.384 (5)
C8—C131.390 (4)C23—C241.387 (5)
C8—C91.392 (5)C23—N21.405 (4)
C8—N11.409 (4)C24—C251.379 (5)
C9—C101.373 (5)C24—H240.9300
C9—H90.9300C25—C261.372 (5)
C10—C111.376 (5)C25—H250.9300
C10—H100.9300C26—C271.387 (5)
C11—C121.380 (5)C26—Br21.888 (3)
C11—Br11.899 (3)C27—C281.365 (5)
C12—C131.362 (5)C27—H270.9300
C12—H120.9300C28—H280.9300
C13—H130.9300C29—O51.422 (5)
C14—O21.426 (5)C29—H29A0.9600
C14—H14A0.9600C29—H29B0.9600
C14—H14B0.9600C29—H29C0.9600
C14—H14C0.9600C30—O61.432 (4)
C15—O31.441 (4)C30—H30A0.9600
C15—H15A0.9600C30—H30B0.9600
C15—H15B0.9600C30—H30C0.9600
C15—H15C0.9600O1—H10.97 (5)
C16—C171.403 (5)O4—H40.83 (5)
C2—C1—C7121.9 (3)O4—C17—C16120.5 (3)
C2—C1—C6116.4 (3)C18—C17—C16121.9 (3)
C7—C1—C6121.7 (3)C19—C18—C17118.8 (3)
O1—C2—C3118.0 (3)C19—C18—H18120.6
O1—C2—C1120.2 (3)C17—C18—H18120.6
C3—C2—C1121.8 (3)O5—C19—C18124.2 (3)
C4—C3—C2119.2 (4)O5—C19—C20114.7 (3)
C4—C3—H3120.4C18—C19—C20121.1 (3)
C2—C3—H3120.4C21—C20—C19120.1 (3)
O2—C4—C3124.5 (4)C21—C20—H20120.0
O2—C4—C5114.7 (3)C19—C20—H20120.0
C3—C4—C5120.8 (3)C20—C21—O6124.6 (3)
C6—C5—C4120.2 (3)C20—C21—C16121.1 (3)
C6—C5—H5119.9O6—C21—C16114.3 (3)
C4—C5—H5119.9N2—C22—C16122.1 (3)
C5—C6—O3124.5 (3)N2—C22—H22119.0
C5—C6—C1121.6 (3)C16—C22—H22119.0
O3—C6—C1113.9 (3)C28—C23—C24118.5 (3)
N1—C7—C1121.7 (3)C28—C23—N2117.5 (3)
N1—C7—H7119.1C24—C23—N2124.1 (3)
C1—C7—H7119.1C25—C24—C23121.0 (3)
C13—C8—C9118.4 (3)C25—C24—H24119.5
C13—C8—N1117.3 (3)C23—C24—H24119.5
C9—C8—N1124.2 (3)C26—C25—C24119.3 (3)
C10—C9—C8120.7 (3)C26—C25—H25120.3
C10—C9—H9119.6C24—C25—H25120.3
C8—C9—H9119.6C25—C26—C27120.6 (3)
C9—C10—C11119.4 (3)C25—C26—Br2119.9 (3)
C9—C10—H10120.3C27—C26—Br2119.6 (3)
C11—C10—H10120.3C28—C27—C26119.5 (3)
C10—C11—C12120.7 (3)C28—C27—H27120.3
C10—C11—Br1119.9 (3)C26—C27—H27120.3
C12—C11—Br1119.3 (2)C27—C28—C23121.2 (3)
C13—C12—C11119.6 (3)C27—C28—H28119.4
C13—C12—H12120.2C23—C28—H28119.4
C11—C12—H12120.2O5—C29—H29A109.5
C12—C13—C8121.0 (3)O5—C29—H29B109.5
C12—C13—H13119.5H29A—C29—H29B109.5
C8—C13—H13119.5O5—C29—H29C109.5
O2—C14—H14A109.5H29A—C29—H29C109.5
O2—C14—H14B109.5H29B—C29—H29C109.5
H14A—C14—H14B109.5O6—C30—H30A109.5
O2—C14—H14C109.5O6—C30—H30B109.5
H14A—C14—H14C109.5H30A—C30—H30B109.5
H14B—C14—H14C109.5O6—C30—H30C109.5
O3—C15—H15A109.5H30A—C30—H30C109.5
O3—C15—H15B109.5H30B—C30—H30C109.5
H15A—C15—H15B109.5C7—N1—C8121.7 (3)
O3—C15—H15C109.5C22—N2—C23121.5 (3)
H15A—C15—H15C109.5C2—O1—H1108 (3)
H15B—C15—H15C109.5C4—O2—C14117.9 (3)
C17—C16—C22121.9 (3)C6—O3—C15117.3 (3)
C17—C16—C21117.0 (3)C17—O4—H4108 (3)
C22—C16—C21121.1 (3)C19—O5—C29118.4 (3)
O4—C17—C18117.5 (3)C21—O6—C30117.0 (3)
C7—C1—C2—O12.5 (6)C17—C18—C19—C201.6 (6)
C6—C1—C2—O1179.6 (4)O5—C19—C20—C21177.8 (4)
C7—C1—C2—C3177.2 (4)C18—C19—C20—C211.2 (6)
C6—C1—C2—C30.7 (6)C19—C20—C21—O6178.3 (4)
O1—C2—C3—C4178.7 (4)C19—C20—C21—C160.5 (6)
C1—C2—C3—C41.6 (6)C17—C16—C21—C201.6 (6)
C2—C3—C4—O2177.2 (4)C22—C16—C21—C20175.9 (4)
C2—C3—C4—C51.2 (6)C17—C16—C21—O6179.7 (3)
O2—C4—C5—C6178.7 (4)C22—C16—C21—O62.2 (5)
C3—C4—C5—C60.2 (7)C17—C16—C22—N20.7 (6)
C4—C5—C6—O3179.4 (4)C21—C16—C22—N2178.0 (4)
C4—C5—C6—C11.2 (7)C28—C23—C24—C250.6 (6)
C2—C1—C6—C50.7 (6)N2—C23—C24—C25179.6 (3)
C7—C1—C6—C5178.6 (4)C23—C24—C25—C260.7 (6)
C2—C1—C6—O3179.8 (4)C24—C25—C26—C271.7 (6)
C7—C1—C6—O31.9 (6)C24—C25—C26—Br2179.8 (3)
C2—C1—C7—N13.5 (6)C25—C26—C27—C281.4 (6)
C6—C1—C7—N1178.7 (4)Br2—C26—C27—C28179.9 (3)
C13—C8—C9—C101.6 (6)C26—C27—C28—C230.0 (6)
N1—C8—C9—C10178.8 (4)C24—C23—C28—C270.9 (6)
C8—C9—C10—C110.3 (6)N2—C23—C28—C27180.0 (3)
C9—C10—C11—C121.9 (6)C1—C7—N1—C8179.6 (4)
C9—C10—C11—Br1179.6 (3)C13—C8—N1—C7153.9 (4)
C10—C11—C12—C131.4 (6)C9—C8—N1—C728.9 (6)
Br1—C11—C12—C13179.9 (3)C16—C22—N2—C23178.9 (4)
C11—C12—C13—C80.6 (6)C28—C23—N2—C22150.7 (4)
C9—C8—C13—C122.1 (6)C24—C23—N2—C2230.3 (6)
N1—C8—C13—C12179.4 (4)C3—C4—O2—C1414.8 (6)
C22—C16—C17—O40.7 (6)C5—C4—O2—C14166.7 (4)
C21—C16—C17—O4178.2 (4)C5—C6—O3—C1515.8 (6)
C22—C16—C17—C18176.3 (4)C1—C6—O3—C15164.8 (4)
C21—C16—C17—C181.2 (6)C18—C19—O5—C293.6 (6)
O4—C17—C18—C19176.7 (4)C20—C19—O5—C29175.3 (4)
C16—C17—C18—C190.4 (6)C20—C21—O6—C306.8 (6)
C17—C18—C19—O5177.2 (4)C16—C21—O6—C30175.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.97 (5)1.69 (5)2.564 (4)149 (5)
O4—H4···N20.83 (5)1.80 (5)2.564 (4)150 (5)

Experimental details

Crystal data
Chemical formulaC15H14BrNO3
Mr336.18
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2655 (5), 9.7305 (6), 18.3806 (11)
α, β, γ (°)97.177 (5), 92.796 (5), 106.214 (5)
V3)1402.94 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.94
Crystal size (mm)0.67 × 0.38 × 0.09
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.421, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
20096, 5514, 3901
Rint0.080
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.112, 1.02
No. of reflections5514
No. of parameters369
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.92

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.97 (5)1.69 (5)2.564 (4)149 (5)
O4—H4···N20.83 (5)1.80 (5)2.564 (4)150 (5)
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSI-2 diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPetek, H., Albayrak, Ç., Ağar, E., Ískeleli, N. O. & Şenel, İ. (2007). Acta Cryst. E63, o810–o812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds