organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[1-(2-Hy­droxy­phen­yl)ethyl­­idene]-3-meth­oxy­benzohydrazide

aCollege of Science, Shenyang University, Shenyang 110044, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: hongyan_ban@163.com

(Received 12 March 2009; accepted 19 March 2009; online 28 March 2009)

In the title compound, C16H16N2O3, the benzohydrazide group is not planar and the mol­ecule exists in a trans configuration with respect to the methyl­idene unit. The dihedral angle between the two substituted benzene rings is 26.9 (2)°. In the crystal structure, the mol­ecular packing is stabilized by intra­molecular O—H⋯N and inter­molecular N—H⋯O hydrogen bonds. The inter­molecular hydrogen bonding forms chains parallel to the b axis.

Related literature

For the biological activities of hydrazones, see: Zhong et al. (2007[Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]); Jimenez-Pulido et al. (2008[Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677-1683.]). For related structures, see: Ban & Li (2008a[Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.],b[Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.]); Yehye et al. (2008[Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.]); Fun et al. (2008a[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o1594-o1595.],b[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1707.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3

  • Mr = 284.31

  • Orthorhombic, P b c a

  • a = 12.932 (2) Å

  • b = 8.756 (2) Å

  • c = 25.784 (3) Å

  • V = 2919.7 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.27 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Univrersity of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.982

  • 22735 measured reflections

  • 3180 independent reflections

  • 2023 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.145

  • S = 1.01

  • 3180 reflections

  • 196 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.897 (10) 2.010 (11) 2.894 (2) 168 (2)
O1—H1⋯N1 0.82 1.82 2.534 (2) 145
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a great deal of hydrazones have been synthesized and structurally characterized (Yehye et al., 2008; Fun et al., 2008a,b; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have reported two hydrazones (Ban & Li, 2008a,b). In this paper, we report herein the crystal structure of the title compound, (I). In the structure of (I), Fig. 1, the molecule exists in a trans configuration with respect to the methylidene unit. The dihedral angle between the two substituted benzene rings is 26.9 (2)°. In the 3-methoxyphenyl unit, the methoxy group is nearly coplanar with the mean plane of the C10–C15 ring, with the C16 atom deviates from the plane by 0.024 (2) Å. The torsion angle of C7-N1-N2-C9 is 8.0 (3)°. In the crystal structure the molecular packing is stabilized by intramolecular O-H···N and intermolecular N—H···O hydrogen bonds, Table 1. The intermolecular hydrogen bond form chains parallel to the b axis, Fig. 2.

Related literature top

For the biological activities of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban & Li (2008a,b); Yehye et al. (2008); Fun et al. (2008a,b); Yang et al. (2008); Ejsmont et al. (2008).

Experimental top

The compound was prepared by refluxing 1-(2-hydroxyphenyl)ethanone (1.0 mol, 0136 g ) with 3-methoxybenzohydrazide (1.0 mol), 0166 g) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. The colorless solid product was filtered, and washed three times with methanol. Colorless block crystals of the title compound were obtained from a methanol solution by slow evaporation in air.

Refinement top

H2 was located in a difference Fourier map and refined isotropically, with N–H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions (C–H = 0.93 - 0.96 Å, O–H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms. Intramolecular O—H···N is shown as a dashed line.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(E)-N'-[1-(2-Hydroxyphenyl)ethylidene]-3-methoxybenzohydrazide top
Crystal data top
C16H16N2O3F(000) = 1200
Mr = 284.31Dx = 1.294 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2030 reflections
a = 12.932 (2) Åθ = 2.3–24.6°
b = 8.756 (2) ŵ = 0.09 mm1
c = 25.784 (3) ÅT = 298 K
V = 2919.7 (9) Å3Block, colourless
Z = 80.27 × 0.23 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3180 independent reflections
Radiation source: fine-focus sealed tube2023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.976, Tmax = 0.982k = 1111
22735 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.9645P]
where P = (Fo2 + 2Fc2)/3
3180 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C16H16N2O3V = 2919.7 (9) Å3
Mr = 284.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.932 (2) ŵ = 0.09 mm1
b = 8.756 (2) ÅT = 298 K
c = 25.784 (3) Å0.27 × 0.23 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3180 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2023 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.982Rint = 0.060
22735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
3180 reflectionsΔρmin = 0.13 e Å3
196 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36951 (13)0.23812 (18)0.55231 (7)0.0649 (5)
H10.34020.17160.56920.097*
O20.16810 (12)0.08166 (16)0.63341 (7)0.0637 (5)
O30.13883 (13)0.2606 (3)0.68697 (8)0.0904 (7)
N10.35910 (13)0.00001 (18)0.60790 (6)0.0449 (4)
N20.29750 (13)0.09206 (19)0.63821 (7)0.0455 (4)
C10.51395 (16)0.0694 (2)0.56716 (8)0.0464 (5)
C20.46801 (19)0.1972 (2)0.54406 (8)0.0531 (6)
C30.5262 (2)0.2881 (3)0.51064 (10)0.0698 (7)
H30.49560.37290.49530.084*
C40.6267 (3)0.2557 (3)0.49994 (11)0.0783 (9)
H40.66430.31890.47790.094*
C50.6727 (2)0.1300 (3)0.52166 (10)0.0726 (8)
H50.74130.10670.51410.087*
C60.61702 (17)0.0388 (3)0.55467 (9)0.0605 (6)
H60.64890.04620.56920.073*
C70.45502 (16)0.0315 (2)0.60247 (8)0.0460 (5)
C80.50836 (18)0.1605 (3)0.62968 (11)0.0736 (8)
H8A0.51150.24750.60710.110*
H8B0.57720.12990.63890.110*
H8C0.47060.18670.66050.110*
C90.20029 (16)0.0434 (2)0.64786 (8)0.0453 (5)
C100.13506 (15)0.1510 (2)0.67804 (7)0.0416 (5)
C110.02940 (15)0.1511 (2)0.66810 (8)0.0472 (5)
H110.00200.08460.64360.057*
C120.03443 (18)0.2490 (3)0.69451 (9)0.0587 (6)
C130.0058 (2)0.3454 (3)0.73150 (10)0.0744 (8)
H130.03750.41170.74940.089*
C140.1094 (2)0.3437 (3)0.74187 (10)0.0741 (8)
H140.13610.40870.76710.089*
C150.17528 (17)0.2464 (3)0.71537 (9)0.0551 (6)
H150.24570.24540.72270.066*
C160.1850 (2)0.1657 (4)0.64939 (12)0.0932 (10)
H16A0.15430.18530.61620.140*
H16B0.25780.18650.64780.140*
H16C0.17430.06070.65860.140*
H20.3118 (19)0.1919 (13)0.6414 (10)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0719 (12)0.0497 (10)0.0731 (12)0.0087 (9)0.0043 (9)0.0107 (8)
O20.0519 (9)0.0352 (8)0.1039 (13)0.0034 (7)0.0095 (9)0.0069 (8)
O30.0454 (10)0.1393 (19)0.0865 (14)0.0128 (11)0.0099 (10)0.0058 (13)
N10.0432 (10)0.0389 (9)0.0524 (10)0.0035 (8)0.0032 (8)0.0017 (8)
N20.0426 (10)0.0339 (9)0.0602 (11)0.0017 (8)0.0002 (8)0.0049 (9)
C10.0512 (13)0.0411 (12)0.0468 (12)0.0051 (10)0.0031 (10)0.0027 (9)
C20.0687 (16)0.0415 (13)0.0490 (13)0.0059 (11)0.0025 (11)0.0042 (10)
C30.104 (2)0.0451 (15)0.0607 (16)0.0093 (14)0.0061 (15)0.0058 (12)
C40.101 (2)0.0675 (18)0.0664 (17)0.0287 (17)0.0235 (16)0.0042 (14)
C50.0695 (17)0.0764 (19)0.0720 (17)0.0163 (15)0.0202 (14)0.0064 (15)
C60.0561 (15)0.0587 (15)0.0666 (15)0.0054 (12)0.0031 (12)0.0024 (12)
C70.0440 (12)0.0407 (11)0.0534 (13)0.0070 (9)0.0078 (10)0.0012 (10)
C80.0466 (14)0.0697 (17)0.105 (2)0.0040 (12)0.0096 (14)0.0346 (16)
C90.0429 (12)0.0363 (11)0.0567 (13)0.0008 (9)0.0096 (10)0.0052 (10)
C100.0436 (11)0.0387 (11)0.0427 (11)0.0043 (9)0.0015 (9)0.0073 (9)
C110.0445 (12)0.0505 (13)0.0466 (12)0.0060 (10)0.0016 (10)0.0068 (10)
C120.0467 (14)0.0763 (17)0.0531 (14)0.0014 (12)0.0097 (11)0.0084 (13)
C130.0687 (18)0.094 (2)0.0608 (16)0.0095 (15)0.0184 (14)0.0177 (15)
C140.0771 (19)0.092 (2)0.0529 (15)0.0094 (16)0.0051 (13)0.0249 (14)
C150.0464 (12)0.0690 (15)0.0498 (13)0.0057 (11)0.0005 (10)0.0029 (12)
C160.0430 (15)0.140 (3)0.097 (2)0.0071 (16)0.0068 (15)0.012 (2)
Geometric parameters (Å, º) top
O1—C21.340 (3)C6—H60.9300
O1—H10.8200C7—C81.498 (3)
O2—C91.229 (2)C8—H8A0.9600
O3—C121.368 (3)C8—H8B0.9600
O3—C161.409 (4)C8—H8C0.9600
N1—C71.278 (2)C9—C101.485 (3)
N1—N21.377 (2)C10—C151.376 (3)
N2—C91.351 (3)C10—C111.390 (3)
N2—H20.897 (10)C11—C121.371 (3)
C1—C61.397 (3)C11—H110.9300
C1—C21.401 (3)C12—C131.376 (3)
C1—C71.480 (3)C13—C141.367 (4)
C2—C31.394 (3)C13—H130.9300
C3—C41.358 (4)C14—C151.385 (3)
C3—H30.9300C14—H140.9300
C4—C51.371 (4)C15—H150.9300
C4—H40.9300C16—H16A0.9600
C5—C61.372 (3)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C2—O1—H1109.5C7—C8—H8C109.5
C12—O3—C16118.2 (2)H8A—C8—H8C109.5
C7—N1—N2119.81 (17)H8B—C8—H8C109.5
C9—N2—N1117.28 (17)O2—C9—N2122.7 (2)
C9—N2—H2118.8 (16)O2—C9—C10122.1 (2)
N1—N2—H2120.2 (17)N2—C9—C10115.14 (18)
C6—C1—C2117.4 (2)C15—C10—C11120.0 (2)
C6—C1—C7121.3 (2)C15—C10—C9122.46 (19)
C2—C1—C7121.4 (2)C11—C10—C9117.50 (18)
O1—C2—C3117.3 (2)C12—C11—C10120.0 (2)
O1—C2—C1123.3 (2)C12—C11—H11120.0
C3—C2—C1119.3 (2)C10—C11—H11120.0
C4—C3—C2121.6 (3)O3—C12—C11124.7 (2)
C4—C3—H3119.2O3—C12—C13115.2 (2)
C2—C3—H3119.2C11—C12—C13120.0 (2)
C3—C4—C5120.0 (3)C14—C13—C12120.0 (2)
C3—C4—H4120.0C14—C13—H13120.0
C5—C4—H4120.0C12—C13—H13120.0
C4—C5—C6119.5 (3)C13—C14—C15120.9 (2)
C4—C5—H5120.2C13—C14—H14119.6
C6—C5—H5120.2C15—C14—H14119.6
C5—C6—C1122.2 (2)C10—C15—C14119.1 (2)
C5—C6—H6118.9C10—C15—H15120.5
C1—C6—H6118.9C14—C15—H15120.5
N1—C7—C1115.99 (19)O3—C16—H16A109.5
N1—C7—C8123.94 (19)O3—C16—H16B109.5
C1—C7—C8120.07 (19)H16A—C16—H16B109.5
C7—C8—H8A109.5O3—C16—H16C109.5
C7—C8—H8B109.5H16A—C16—H16C109.5
H8A—C8—H8B109.5H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)2.01 (1)2.894 (2)168 (2)
O1—H1···N10.821.822.534 (2)145
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O3
Mr284.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)12.932 (2), 8.756 (2), 25.784 (3)
V3)2919.7 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
22735, 3180, 2023
Rint0.060
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.145, 1.01
No. of reflections3180
No. of parameters196
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.897 (10)2.010 (11)2.894 (2)168 (2)
O1—H1···N10.821.822.534 (2)144.7
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

Financial support of this work was provided by the Research Foundation of Liaoning Province (grant No. 2008470).

References

First citationBan, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677–1683.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Univrersity of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds