organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1RS,2RS,3RS)-1,2-Dimeth­­oxy-3-methyl-2-phenyl-1-(2-thien­yl)cyclo­propane

aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería, 8, 33006 Oviedo, Spain, and bDepartamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería, 8, 33006 Oviedo, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 5 February 2009; accepted 13 March 2009; online 19 March 2009)

In the title compound, C16H18O2S, a new cis-1,2-dimethoxy­cyclo­propane, the two meth­oxy groups are in a cis configuration and in trans positions with respect to the H atom and the phenyl and thienyl rings on the cyclo­propyl group. The mol­ecular packing is dominated by weak inter­molecular C—H⋯O inter­actions, allowing the formation of zigzag chains propagating parallel to the c axis. The dihedral angle between the aromatic rings is 86.12 (8)°.

Related literature

For related literature on the chemistry, see: Lebel et al. (2003[Lebel, H., Marcoux, J.-F., Molinaro, C. & Charette, A. B. (2003). Chem. Rev. 103, 977-1050.]). For a general overview of the biological implications of cyclo­propane-related derivatives, see: de Meijere et al. (2003[Meijere, A. de (2003). Chem. Rev. 103, 931-932.]). For their occurrence, see: Wessjohann et al. (2003[Wessjohann, L. A., Brandt, W. & Thiemann, T. (2003). Chem. Rev. 103, 1625-1647.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18O2S

  • Mr = 274.36

  • Monoclinic, P 21 /c

  • a = 12.9924 (3) Å

  • b = 9.7194 (2) Å

  • c = 14.7960 (3) Å

  • β = 128.395 (1)°

  • V = 1464.37 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.92 mm−1

  • T = 293 K

  • 0.56 × 0.35 × 0.28 mm

Data collection
  • Oxford Diffraction Nova diffractometer

  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) Tmin = 0.330, Tmax = 0.581

  • 7070 measured reflections

  • 2830 independent reflections

  • 2435 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.192

  • S = 1.16

  • 2830 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.93 2.55 3.469 (3) 172
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The cyclopropane ring is a quite common subunit of natural products isolated from plants, fungi, and microorganisms (Wessjohann, et al. 2003). Many of these natural products show biological activity, and some of them have found applications as drugs or insecticides (de Meijere et al., 2003). Classical chemical synthesis of cyclopropane derivatives include the halomethyl-metal mediated cyclopropanation of olefins, the transition-metal-catalyzed carbene-transfer reaction from diazo compounds, and the nucleophilic-addition/ring-closing sequence (Lebel et al. 2003). A new method for the synthesis of cis-1,2-dimethoxycyclopropane through the cyclopropanation of lithium ketone enolates with Fischer carbene complex will be published elsewhere. The molecular structure of the title compound is shown in Fig. 1. There are no unusual bonding features. O atoms of the two methoxy groups are in cis position to each other and in trans positions with the C3 hydrogen atom, and point away from the phenyl and from thienyl rings on the cyclopropyl group, respectively. The molecular packing is dominated by the weak intermolecular interaction C16—H16 ··· O2 allowing the formation of zig-zag chains roughly parallel to the c crystallographic axis and perpendicular to the b axis.

Related literature top

For related literature on the chemistry, see: Lebel et al. (2003). For a general overview of the biological implications of cyclopropane-related derivatives, see: de Meijere et al. (2003). For their occurrence, see: Wessjohann et al. (2003).

Experimental top

Lithium enolate of 2-acetylthiophene was prepared by treatment of a solution of the corresponding ketone (1.2 mmol, 151 mg) and lithium diisopropylamide (1.2 mmol, 0.39 M, 3.1 ml) at 195 K for 30 mins. Pentacarbonyl(1-methoxy-1-phenylmethylene)-chromium (1 mmol, 312 mg) in THF (10 ml) was added over lithium enolate solution at 195 K. Cooling bath was removed and the reaction mixture allowed to warm up to 273 K and stirred for a further 45 mins, concentrated in high vacuum, redisolved in Et2O (10 ml) and cooled to 195 K. TfOMe (2.0 mmol, 224 µL) was added dropwise to the mixture. After 5 mins, cooling bath was removed and the reaction mixture was stirred for 30 min while allowing the temperature to reach 273 K. The reaction mixture was quenched with NH4Cl (20 ml). The resulting mixture was diluted with hexanes/ethyl acetate, 10/1 (110 ml) and subjected to air oxidation under sunlight. After 2–12 h the suspension was filtered through Celite and extracted with diethyl ether (3 x 10 ml). The organic layers were combined, dried over anhydrous Na2SO4 and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (hexanes/ethyl acetate, 20/1) to yield the title compound (277 mg, 77%) as a 1:1 diastereoisomer mixture of the all-S (1,2,3) and all-R forms.

Refinement top

At the end of the refinement the highest peak in the electron density was 0.47 e Å -3. The deepest hole was -0.52 e Å -3.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at 50% probability level.
(1RS,2RS,3RS)-1,2-Dimethoxy-3-methyl-2-phenyl-1-(2-thienyl)cyclopropane top
Crystal data top
C16H18O2SF(000) = 584
Mr = 274.36Dx = 1.244 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 5163 reflections
a = 12.9924 (3) Åθ = 4.3–74.9°
b = 9.7194 (2) ŵ = 1.92 mm1
c = 14.7960 (3) ÅT = 293 K
β = 128.395 (1)°Prism, colourless
V = 1464.37 (6) Å30.56 × 0.35 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Nova
diffractometer
2830 independent reflections
Radiation source: Nova (Cu) X-ray Source2435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.2640 pixels mm-1θmax = 75.0°, θmin = 4.3°
ω scansh = 1515
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
k = 1211
Tmin = 0.330, Tmax = 0.581l = 1618
7070 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.1086P)2 + 0.4259P]
where P = (Fo2 + 2Fc2)/3
2830 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C16H18O2SV = 1464.37 (6) Å3
Mr = 274.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.9924 (3) ŵ = 1.92 mm1
b = 9.7194 (2) ÅT = 293 K
c = 14.7960 (3) Å0.56 × 0.35 × 0.28 mm
β = 128.395 (1)°
Data collection top
Oxford Diffraction Nova
diffractometer
2830 independent reflections
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
2435 reflections with I > 2σ(I)
Tmin = 0.330, Tmax = 0.581Rint = 0.021
7070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.16Δρmax = 0.47 e Å3
2830 reflectionsΔρmin = 0.52 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20782 (8)0.21540 (8)0.43464 (7)0.0761 (3)
O10.21967 (15)0.00779 (16)0.12428 (13)0.0513 (4)
O20.17975 (16)0.20993 (15)0.22182 (15)0.0549 (4)
C20.24847 (18)0.0958 (2)0.29248 (17)0.0431 (5)
C140.2341 (2)0.0488 (3)0.43703 (18)0.0521 (5)
H140.24790.13760.42300.063*
C130.22814 (19)0.0728 (2)0.37976 (18)0.0473 (5)
C70.2809 (2)0.1667 (2)0.26751 (17)0.0462 (5)
C80.3982 (3)0.2360 (3)0.3460 (2)0.0597 (6)
H80.47760.18940.38400.072*
C40.2883 (3)0.0554 (3)0.0888 (2)0.0654 (7)
H4B0.24470.03430.00910.098*
H4A0.37670.02110.13500.098*
H4C0.28980.15330.09820.098*
C10.27813 (19)0.0184 (2)0.24060 (17)0.0435 (5)
C120.1637 (2)0.2390 (3)0.2108 (2)0.0566 (6)
H120.08440.19410.15750.068*
C30.38579 (19)0.0804 (2)0.32878 (19)0.0499 (5)
H30.44920.04030.40560.060*
C160.2013 (3)0.1224 (4)0.5271 (2)0.0744 (8)
H160.18920.16060.57750.089*
C50.4434 (3)0.1874 (3)0.2983 (3)0.0680 (7)
H5C0.53040.16030.32830.102*
H5B0.38940.19600.21600.102*
H5A0.44710.27420.33120.102*
C60.0420 (3)0.1869 (3)0.1399 (2)0.0707 (7)
H6C0.00000.26830.09440.106*
H6A0.02580.11170.09040.106*
H6B0.00730.16500.17950.106*
C90.3975 (3)0.3743 (3)0.3681 (3)0.0770 (8)
H90.47640.41990.42130.092*
C150.2154 (3)0.0112 (3)0.5202 (2)0.0725 (8)
H150.21340.07580.56540.087*
C100.2806 (4)0.4449 (3)0.3115 (3)0.0805 (9)
H100.28080.53780.32650.097*
C110.1640 (3)0.3783 (3)0.2333 (3)0.0722 (7)
H110.08510.42600.19530.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0953 (6)0.0630 (5)0.0924 (6)0.0042 (3)0.0694 (5)0.0161 (3)
O10.0570 (8)0.0570 (9)0.0485 (8)0.0101 (7)0.0369 (7)0.0091 (6)
O20.0592 (9)0.0437 (9)0.0685 (10)0.0084 (6)0.0430 (8)0.0110 (7)
C20.0444 (10)0.0407 (10)0.0474 (10)0.0004 (7)0.0300 (8)0.0020 (8)
C140.0751 (14)0.0535 (12)0.0511 (11)0.0033 (10)0.0508 (11)0.0016 (9)
C130.0455 (10)0.0502 (12)0.0485 (11)0.0042 (8)0.0304 (9)0.0057 (8)
C70.0570 (11)0.0442 (11)0.0512 (10)0.0057 (9)0.0404 (10)0.0038 (8)
C80.0634 (13)0.0580 (14)0.0687 (14)0.0138 (11)0.0464 (12)0.0144 (11)
C40.0861 (17)0.0669 (16)0.0714 (15)0.0114 (13)0.0628 (14)0.0076 (12)
C10.0441 (10)0.0458 (11)0.0454 (10)0.0042 (8)0.0302 (8)0.0044 (8)
C120.0645 (13)0.0530 (13)0.0613 (13)0.0040 (10)0.0435 (11)0.0036 (10)
C30.0434 (10)0.0512 (12)0.0545 (11)0.0004 (8)0.0301 (9)0.0065 (9)
C160.0739 (16)0.095 (2)0.0701 (15)0.0119 (15)0.0523 (14)0.0275 (15)
C50.0604 (13)0.0686 (16)0.0820 (17)0.0100 (11)0.0477 (13)0.0076 (13)
C60.0588 (14)0.0811 (18)0.0701 (15)0.0210 (12)0.0389 (13)0.0191 (13)
C90.104 (2)0.0571 (15)0.0944 (19)0.0321 (15)0.0740 (18)0.0298 (14)
C150.0888 (18)0.088 (2)0.0629 (15)0.0051 (15)0.0579 (15)0.0005 (13)
C100.134 (3)0.0452 (13)0.106 (2)0.0082 (16)0.096 (2)0.0102 (14)
C110.099 (2)0.0547 (15)0.0890 (18)0.0175 (14)0.0713 (17)0.0124 (13)
Geometric parameters (Å, º) top
S1—C161.686 (3)C1—C31.521 (3)
S1—C131.708 (2)C12—C111.394 (4)
O1—C11.407 (2)C12—H120.9300
O1—C41.425 (3)C3—C51.504 (3)
O2—C21.400 (2)C3—H30.9800
O2—C61.424 (3)C16—C151.324 (5)
C2—C131.487 (3)C16—H160.9300
C2—C31.518 (3)C5—H5C0.9600
C2—C11.529 (3)C5—H5B0.9600
C14—C131.428 (3)C5—H5A0.9600
C14—C151.441 (3)C6—H6C0.9600
C14—H140.9300C6—H6A0.9600
C7—C81.389 (3)C6—H6B0.9600
C7—C121.389 (3)C9—C101.378 (5)
C7—C11.490 (3)C9—H90.9300
C8—C91.384 (4)C15—H150.9300
C8—H80.9300C10—C111.369 (5)
C4—H4B0.9600C10—H100.9300
C4—H4A0.9600C11—H110.9300
C4—H4C0.9600
C16—S1—C1392.92 (13)C11—C12—H12119.7
C1—O1—C4112.78 (17)C5—C3—C2121.32 (19)
C2—O2—C6113.11 (18)C5—C3—C1122.9 (2)
O2—C2—C13113.14 (17)C2—C3—C160.40 (13)
O2—C2—C3113.99 (17)C5—C3—H3114.0
C13—C2—C3118.79 (17)C2—C3—H3114.0
O2—C2—C1116.28 (16)C1—C3—H3114.0
C13—C2—C1124.24 (18)C15—C16—S1112.6 (2)
C3—C2—C159.91 (13)C15—C16—H16123.7
C13—C14—C15108.7 (2)S1—C16—H16123.7
C13—C14—H14125.6C3—C5—H5C109.5
C15—C14—H14125.6C3—C5—H5B109.5
C14—C13—C2131.81 (19)H5C—C5—H5B109.5
C14—C13—S1110.92 (15)C3—C5—H5A109.5
C2—C13—S1116.98 (16)H5C—C5—H5A109.5
C8—C7—C12118.8 (2)H5B—C5—H5A109.5
C8—C7—C1121.7 (2)O2—C6—H6C109.5
C12—C7—C1119.55 (19)O2—C6—H6A109.5
C9—C8—C7120.3 (3)H6C—C6—H6A109.5
C9—C8—H8119.9O2—C6—H6B109.5
C7—C8—H8119.9H6C—C6—H6B109.5
O1—C4—H4B109.5H6A—C6—H6B109.5
O1—C4—H4A109.5C10—C9—C8120.4 (3)
H4B—C4—H4A109.5C10—C9—H9119.8
O1—C4—H4C109.5C8—C9—H9119.8
H4B—C4—H4C109.5C16—C15—C14114.8 (3)
H4A—C4—H4C109.5C16—C15—H15122.6
O1—C1—C7114.01 (17)C14—C15—H15122.6
O1—C1—C3116.44 (17)C11—C10—C9120.1 (3)
C7—C1—C3121.67 (17)C11—C10—H10119.9
O1—C1—C2111.72 (16)C9—C10—H10119.9
C7—C1—C2122.67 (16)C10—C11—C12119.9 (3)
C3—C1—C259.69 (13)C10—C11—H11120.1
C7—C12—C11120.6 (2)C12—C11—H11120.1
C7—C12—H12119.7
C6—O2—C2—C1373.1 (2)C3—C2—C1—O1108.80 (19)
C6—O2—C2—C3147.1 (2)O2—C2—C1—C7145.90 (19)
C6—O2—C2—C180.2 (2)C13—C2—C1—C74.1 (3)
C15—C14—C13—C2175.9 (2)C3—C2—C1—C7110.3 (2)
C15—C14—C13—S12.4 (3)O2—C2—C1—C3103.76 (19)
O2—C2—C13—C14153.1 (2)C13—C2—C1—C3106.2 (2)
C3—C2—C13—C1469.2 (3)C8—C7—C12—C110.6 (3)
C1—C2—C13—C142.2 (3)C1—C7—C12—C11179.0 (2)
O2—C2—C13—S133.7 (2)O2—C2—C3—C55.1 (3)
C3—C2—C13—S1103.9 (2)C13—C2—C3—C5132.3 (2)
C1—C2—C13—S1175.39 (15)C1—C2—C3—C5112.6 (2)
C16—S1—C13—C141.88 (18)O2—C2—C3—C1107.59 (19)
C16—S1—C13—C2176.44 (17)C13—C2—C3—C1115.1 (2)
C12—C7—C8—C90.8 (3)O1—C1—C3—C59.3 (3)
C1—C7—C8—C9179.2 (2)C7—C1—C3—C5137.9 (2)
C4—O1—C1—C762.3 (2)C2—C1—C3—C5110.2 (2)
C4—O1—C1—C387.4 (2)O1—C1—C3—C2100.84 (19)
C4—O1—C1—C2153.32 (19)C7—C1—C3—C2112.0 (2)
C8—C7—C1—O1118.9 (2)C13—S1—C16—C150.8 (2)
C12—C7—C1—O159.4 (2)C7—C8—C9—C100.7 (4)
C8—C7—C1—C329.0 (3)S1—C16—C15—C140.5 (4)
C12—C7—C1—C3152.6 (2)C13—C14—C15—C161.8 (4)
C8—C7—C1—C2101.0 (2)C8—C9—C10—C110.3 (4)
C12—C7—C1—C280.6 (3)C9—C10—C11—C120.1 (4)
O2—C2—C1—O15.0 (2)C7—C12—C11—C100.3 (4)
C13—C2—C1—O1145.00 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.553.469 (3)172
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H18O2S
Mr274.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.9924 (3), 9.7194 (2), 14.7960 (3)
β (°) 128.395 (1)
V3)1464.37 (6)
Z4
Radiation typeCu Kα
µ (mm1)1.92
Crystal size (mm)0.56 × 0.35 × 0.28
Data collection
DiffractometerOxford Diffraction Nova
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
Tmin, Tmax0.330, 0.581
No. of measured, independent and
observed [I > 2σ(I)] reflections
7070, 2830, 2435
Rint0.021
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.192, 1.16
No. of reflections2830
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.52

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.553.469 (3)172
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

Financial support from the Spanish Ministerio de Educacion y Ciencia (MAT2006–01997 and 'Factoría de Cristalización' Consolider Ingenio 2010) and FEDER funding is acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLebel, H., Marcoux, J.-F., Molinaro, C. & Charette, A. B. (2003). Chem. Rev. 103, 977–1050.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeijere, A. de (2003). Chem. Rev. 103, 931–932.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWessjohann, L. A., Brandt, W. & Thiemann, T. (2003). Chem. Rev. 103, 1625–1647.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds