organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(3,5-Di­chloro­anilino)carbon­yl]propionic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 14 February 2009; accepted 20 March 2009; online 25 March 2009)

In the crystal structure of the title compound, C10H9Cl2NO3, the conformations of the amide O atom and the carbonyl O atom of the acid segment are anti to the H atoms of the adjacent –CH2 groups. The C=O and O—H bonds of the acid group are in relatively rare anti positions with respect to each other. This is an obvious consequence of the concerted effects of both the all-anti mol­ecular conformation and the intermolecular hydrogen bond donated to the amide carbonyl group. In the crystal, mol­ecules are packed into infinite chains through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the effect of ring and side-chain substitutions on the structures of amide compounds, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466.]). For the packing of mol­ecules involving dimeric hydrogen-bonded association of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994[Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.]). For the various modes of inter­linking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9Cl2NO3

  • Mr = 262.08

  • Monoclinic, P 21 /n

  • a = 7.350 (1) Å

  • b = 10.318 (2) Å

  • c = 15.031 (3) Å

  • β = 99.44 (2)°

  • V = 1124.5 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.15 mm−1

  • T = 299 K

  • 0.48 × 0.30 × 0.28 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.142, Tmax = 0.242

  • 4204 measured reflections

  • 2005 independent reflections

  • 1794 reflections with I > 2σ(I)

  • Rint = 0.111

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.170

  • S = 1.13

  • 2005 reflections

  • 151 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.95 (4) 1.93 (4) 2.857 (3) 167 (3)
O2—H2O⋯O1ii 0.82 (2) 1.85 (2) 2.656 (3) 170 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitutions on the structures of this class of compounds (Gowda et al., 2009), we have determined the crystal structure of N-(3,5-dichlorophenyl)-succinamic acid (N35DCPSA, systematic name: 3-[(3,5-dichloro)-aminocarbonyl]propionic acid). The conformations of N—H and C=O bonds in the amide segment of the structure are anti to each other and those of the amide O atom and the carbonyl O atom of the acid segment are also anti to the H atoms attached to the adjacent C atoms (Fig.1). Further, C=O and O—H bonds of the acid group are anti to each other, contrary to the more general syn conformation observed for C=O and O—H bonds of the acid group e.g. N-(2,6-dimethylphenyl)- succinamic acid (N26DMPSA, Gowda et al., 2009). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994). In the present study, the rare anti conformation of the C=O and O—H bonds of the acid group has been observed. The torsional angles of the groups, C2—C1—N1—C7, C6—C1—N1—C7, C1—N1—C7—C8, C1—N1—C7—O1, N1—C7—C8—C9, C7—C8—C9—C10, O1—C7—C8—C9, C8—C9—C10—O2 and C8—C9—C10—O3 in the side chain of N35DCPSA are -180.0 (3)°, -1.3 (4)°, -174.4 (3)°, 4.3 (5)°, 178.9 (2)°, -175.5 (2)°, 0.4 (2)°, 175.0 (3)° and -5.3 (5)°, respectively, compared to the corresponding values of 114.1 (2)°, -66.5 (2)°, -176.2 (1)°, 2.0 (3)°, -145.4 (2)°, -175.5 (1)°, 36.3 (2)°, -161.1 (2)° and 19.1 (3)°, respectively, for N26DMPSA. The N—H···O and O—H···O intermolecular hydrogen bonds pack the molecules into infinite chains in the structure (Table 1, Fig.2).

Related literature top

For the effect of ring and side-chain

substitutions on the structures of amide compounds, see: Gowda et al. (2009). For the packing of molecules involving dimeric hydrogen-bonded association of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994). For the various modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976).

Experimental top

The solution of succinic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 3,5-dichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,5-dichloroaniline. The resultant solid N-(3,5-dichlorophenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement top

The N-bound and O-bound H atoms were located in a difference map. The position of the N-bound H atom was refined with N—H = 0.95 (4) Å and that of the O—H was refined with a distance restrained to 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97Å]. All H atoms were treated with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule with atom labeling. Displacement ellipsoids are at the 50% probability level, H atoms represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing detail in the title crystal with hydrogen bonds shown as dashed lines.
3-[(3,5-Dichloroanilino)carbonyl]propionic acid top
Crystal data top
C10H9Cl2NO3F(000) = 536
Mr = 262.08Dx = 1.548 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.350 (1) Åθ = 7.4–20.6°
b = 10.318 (2) ŵ = 5.15 mm1
c = 15.031 (3) ÅT = 299 K
β = 99.44 (2)°Prism, colourless
V = 1124.5 (3) Å30.48 × 0.30 × 0.28 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1794 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.111
Graphite monochromatorθmax = 67.1°, θmin = 5.2°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.142, Tmax = 0.242l = 1717
4204 measured reflections3 standard reflections every 120 min
2005 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0804P)2 + 0.4071P]
where P = (Fo2 + 2Fc2)/3
2005 reflections(Δ/σ)max = 0.009
151 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.54 e Å3
Crystal data top
C10H9Cl2NO3V = 1124.5 (3) Å3
Mr = 262.08Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.350 (1) ŵ = 5.15 mm1
b = 10.318 (2) ÅT = 299 K
c = 15.031 (3) Å0.48 × 0.30 × 0.28 mm
β = 99.44 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1794 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.111
Tmin = 0.142, Tmax = 0.2423 standard reflections every 120 min
4204 measured reflections intensity decay: 1.0%
2005 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.37 e Å3
2005 reflectionsΔρmin = 0.54 e Å3
151 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2687 (3)0.5234 (3)0.51327 (16)0.0360 (6)
C20.1971 (3)0.4036 (3)0.48363 (18)0.0390 (6)
H20.16680.38630.42230.047*
C30.1715 (4)0.3108 (3)0.54585 (19)0.0415 (6)
C40.2153 (4)0.3313 (3)0.63743 (19)0.0453 (7)
H40.19710.26760.67890.054*
C50.2872 (4)0.4502 (4)0.66443 (18)0.0453 (7)
C60.3155 (4)0.5480 (3)0.60551 (17)0.0435 (7)
H60.36420.62760.62660.052*
C70.3499 (3)0.7371 (3)0.45487 (16)0.0374 (6)
C80.3313 (4)0.8125 (3)0.36730 (17)0.0421 (7)
H8A0.39960.76850.32630.051*
H8B0.20250.81480.33950.051*
C90.4014 (4)0.9480 (3)0.38180 (17)0.0447 (7)
H9A0.53220.94510.40550.054*
H9B0.34000.98910.42680.054*
C100.3724 (4)1.0293 (3)0.29825 (18)0.0436 (7)
N10.2863 (3)0.6158 (3)0.44600 (15)0.0403 (6)
H1N0.242 (4)0.584 (4)0.387 (3)0.048*
O10.4152 (3)0.7867 (3)0.52683 (13)0.0543 (6)
O20.4186 (4)1.1531 (3)0.30787 (14)0.0622 (7)
H2O0.459 (5)1.167 (5)0.3609 (15)0.075*
O30.3114 (4)0.9893 (3)0.22424 (13)0.0620 (7)
Cl10.07961 (12)0.16217 (8)0.50728 (6)0.0580 (3)
Cl20.34909 (13)0.47994 (11)0.77952 (5)0.0696 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (12)0.0368 (17)0.0252 (12)0.0015 (11)0.0026 (9)0.0014 (11)
C20.0487 (13)0.0390 (17)0.0287 (12)0.0004 (12)0.0050 (10)0.0022 (11)
C30.0490 (13)0.0379 (17)0.0382 (14)0.0009 (12)0.0089 (10)0.0034 (12)
C40.0589 (16)0.044 (2)0.0339 (14)0.0048 (13)0.0098 (11)0.0050 (12)
C50.0585 (15)0.051 (2)0.0265 (13)0.0048 (13)0.0071 (10)0.0019 (12)
C60.0590 (15)0.0454 (19)0.0254 (13)0.0089 (13)0.0044 (10)0.0008 (12)
C70.0463 (12)0.0401 (17)0.0242 (11)0.0013 (12)0.0007 (9)0.0008 (11)
C80.0598 (15)0.0408 (17)0.0237 (12)0.0014 (13)0.0007 (10)0.0025 (11)
C90.0643 (15)0.0440 (19)0.0230 (12)0.0036 (14)0.0009 (10)0.0038 (12)
C100.0611 (15)0.0426 (18)0.0252 (12)0.0021 (13)0.0012 (10)0.0043 (12)
N10.0602 (12)0.0370 (15)0.0220 (10)0.0033 (11)0.0019 (8)0.0001 (9)
O10.0824 (13)0.0483 (15)0.0272 (10)0.0156 (11)0.0056 (9)0.0019 (9)
O20.1047 (17)0.0458 (15)0.0289 (11)0.0123 (13)0.0107 (10)0.0092 (10)
O30.1032 (17)0.0545 (16)0.0224 (10)0.0094 (13)0.0071 (10)0.0031 (9)
Cl10.0808 (6)0.0403 (6)0.0533 (5)0.0134 (4)0.0127 (4)0.0065 (3)
Cl20.1032 (7)0.0795 (8)0.0243 (4)0.0260 (5)0.0056 (4)0.0014 (3)
Geometric parameters (Å, º) top
C1—C21.388 (4)C7—N11.335 (4)
C1—C61.396 (4)C7—C81.516 (4)
C1—N11.411 (4)C8—C91.494 (5)
C2—C31.372 (4)C8—H8A0.97
C2—H20.93C8—H8B0.97
C3—C41.378 (4)C9—C101.496 (4)
C3—Cl11.737 (3)C9—H9A0.97
C4—C51.371 (5)C9—H9B0.97
C4—H40.93C10—O31.202 (4)
C5—C61.381 (4)C10—O21.323 (4)
C5—Cl21.742 (3)N1—H1N0.95 (4)
C6—H60.93O2—H2O0.82 (2)
C7—O11.221 (3)
C2—C1—C6120.0 (3)N1—C7—C8114.5 (2)
C2—C1—N1116.5 (2)C9—C8—C7112.0 (2)
C6—C1—N1123.5 (3)C9—C8—H8A109
C3—C2—C1119.3 (2)C7—C8—H8A109
C3—C2—H2120.3C9—C8—H8B109
C1—C2—H2120.3C7—C8—H8B109
C2—C3—C4122.6 (3)H8A—C8—H8B108
C2—C3—Cl1118.5 (2)C8—C9—C10113.8 (2)
C4—C3—Cl1118.9 (2)C8—C9—H9A109
C5—C4—C3116.7 (3)C10—C9—H9A109
C5—C4—H4121.7C8—C9—H9B109
C3—C4—H4121.7C10—C9—H9B109
C4—C5—C6123.7 (3)H9A—C9—H9B108
C4—C5—Cl2118.5 (2)O3—C10—O2118.8 (3)
C6—C5—Cl2117.8 (3)O3—C10—C9124.4 (3)
C5—C6—C1117.7 (3)O2—C10—C9116.8 (3)
C5—C6—H6121.1C7—N1—C1129.3 (2)
C1—C6—H6121.1C7—N1—H1N118 (2)
O1—C7—N1124.2 (3)C1—N1—H1N112 (2)
O1—C7—C8121.3 (3)C10—O2—H2O109 (3)
O1—C7—C8—C90.2 (4)O1—C7—N1—C14.3 (5)
N1—C7—C8—C9178.9 (2)C8—C7—N1—C1174.4 (3)
C7—C8—C9—C10175.5 (2)C2—C1—N1—C7180.0 (3)
C8—C9—C10—O35.3 (5)C6—C1—N1—C71.3 (4)
C8—C9—C10—O2175.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.95 (4)1.93 (4)2.857 (3)167 (3)
O2—H2O···O1ii0.82 (2)1.85 (2)2.656 (3)170 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H9Cl2NO3
Mr262.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)7.350 (1), 10.318 (2), 15.031 (3)
β (°) 99.44 (2)
V3)1124.5 (3)
Z4
Radiation typeCu Kα
µ (mm1)5.15
Crystal size (mm)0.48 × 0.30 × 0.28
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.142, 0.242
No. of measured, independent and
observed [I > 2σ(I)] reflections
4204, 2005, 1794
Rint0.111
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.170, 1.13
No. of reflections2005
No. of parameters151
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.54

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.95 (4)1.93 (4)2.857 (3)167 (3)
O2—H2O···O1ii0.82 (2)1.85 (2)2.656 (3)170 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds