organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis[(E)-cyclo­pentyl­­idene]thio­carbono­hydrazide

aDepartment of Chemistry and Environmental Science, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bDepartment of Materials and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: xiangyz_2008@163.com

(Received 26 December 2008; accepted 13 March 2009; online 25 March 2009)

In the title mol­ecule, C11H18N4S, an intra­molecular N—H⋯N hydrogen bond [N⋯N = 2.558 (3)Å] is observed. The two cyclo­pentyl rings are disordered between two conformations in 1:1 and 2:1 ratios. In the crystal structure, weak inter­molecular N—H⋯S hydrogen bonds [N⋯S = 3.547 (3) Å] link pairs of mol­ecules into centrosymmetric dimers.

Related literature

For related Schiff base derivatives of thio­carbohydrazide, see: Bacchi et al. (1996[Bacchi, A., Bonini, A., Carcelli, M., Ferraro, F., Leporati, E., Pelizzi, C. & Pelizzi, G. (1996). J. Chem. Soc. Dalton. Trans. pp. 2699-2705. ]); Chantrapromma et al. (2001[Chantrapromma, S., Razak, I. A., Fun, H.-K., Karalai, C., Zhang, H., Xie, F.-X., Tian, Y.-P., Ma, W., Zhang, Y.-H. & Ni, S.-S. (2001). Acta Cryst. C57, 289-290.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18N4S

  • Mr = 238.35

  • Triclinic, [P \overline 1]

  • a = 6.0344 (19) Å

  • b = 10.114 (3) Å

  • c = 11.137 (3) Å

  • α = 106.579 (5)°

  • β = 96.897 (5)°

  • γ = 100.574 (5)°

  • V = 629.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 273 K

  • 0.12 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.986

  • 3340 measured reflections

  • 2212 independent reflections

  • 1673 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.03

  • 2212 reflections

  • 172 parameters

  • 53 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2 0.86 2.17 2.558 (3) 108
N1—H1⋯S1i 0.86 2.70 3.547 (3) 170
Symmetry code: (i) -x-1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) ; cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Thiocarbohydrazide and its Schiff base derivatives have attracted considerable interest in the chemistry of metal complexes containing nitrogen and donors (Bacchi et al., 1996; Chantrapromma et al., 2001]. The interest in this field may be attributed to the striking structural features in the resultant metal complexes and their biological activities. Herein we present the synthesis and crystal structure of the title compound.

The title compound is shown in Fig. 1. Two cyclopentanone rings are disordered between two conformations in the ratios 1:1 and 2:1, respectively. The four N atoms and the CS are almost coplanar with the mean deviation of 0.024 (2) Å. In this molecule, there exist intramolecular N—H···N hydrogen bond (Table 1). Weak intermolecular N—H···S hydrogen bonds (Table 1) link two molecules into centrosymmetric dimers.

Related literature top

For related Schiff base derivatives of thiocarbohydrazide, see: Bacchi et al. (1996); Chantrapromma et al. (2001).

Experimental top

A solution of cyclopentanone and thiocarbohydrazide in ethanol in the ratio of 2:1 were refluxed for 8 h with stirring and cooled to the room temperature. The yellow precipitated powder of title compound was filtered and washed with water and ethanol, and then air dried thoroughly. A crystal suitable for X-ray diffraction was obtained by evaporation from a DMF and ethanol mixture. The yield is 78% and elemental analysis: calc. for C11H18N4S: C 55.43, H 7.61, N 23.51; found: C 55.26, H 7.49, N 23.88%. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II. The CCDC number: 695533.

Refinement top

The H atoms were found in a difference map, then placed in idealized positions (C—H 0.97 Å, N—H 0.86 Å), and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N). Two cyclopentanone rings were treated as disordered between two conformations with the refined occupancies 0.533 (14):0.567 (14) and 0.661 (14):0.339 (14), respectively.

Computing details top

Data collection: SMART (Siemens, 1996) [or APEX2]; cell refinement: SAINT (Siemens, 1996) [or APEX2]; data reduction: SAINT (Siemens, 1996) [or APEX2]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids. Only major parts of disordered rings are shown.
1,5-Bis[(E)-cyclopentylidene]thiocarbonohydrazide top
Crystal data top
C11H18N4SZ = 2
Mr = 238.35F(000) = 256
Triclinic, P1Dx = 1.257 Mg m3
a = 6.0344 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.114 (3) ÅCell parameters from 1126 reflections
c = 11.137 (3) Åθ = 3.3–24.9°
α = 106.579 (5)°µ = 0.24 mm1
β = 96.897 (5)°T = 273 K
γ = 100.574 (5)°Block, colourless
V = 629.6 (3) Å30.12 × 0.08 × 0.06 mm
Data collection top
Bruker SMART APEX
diffractometer
2212 independent reflections
Radiation source: fine-focus sealed tube1673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.972, Tmax = 0.986k = 129
3340 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.1999P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2212 reflectionsΔρmax = 0.16 e Å3
172 parametersΔρmin = 0.17 e Å3
53 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (3)
Crystal data top
C11H18N4Sγ = 100.574 (5)°
Mr = 238.35V = 629.6 (3) Å3
Triclinic, P1Z = 2
a = 6.0344 (19) ÅMo Kα radiation
b = 10.114 (3) ŵ = 0.24 mm1
c = 11.137 (3) ÅT = 273 K
α = 106.579 (5)°0.12 × 0.08 × 0.06 mm
β = 96.897 (5)°
Data collection top
Bruker SMART APEX
diffractometer
2212 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1673 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.986Rint = 0.013
3340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04253 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2212 reflectionsΔρmin = 0.17 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate(isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.52345 (11)0.37097 (7)0.62060 (6)0.0680 (3)
N10.1552 (3)0.56488 (18)0.63675 (17)0.0545 (5)
H10.23340.59080.58140.065*
N20.0700 (3)0.63623 (19)0.68996 (17)0.0580 (5)
N30.1013 (3)0.42144 (18)0.75435 (17)0.0580 (5)
H30.03910.46850.77550.070*
N40.1709 (3)0.3132 (2)0.8044 (2)0.0690 (6)
C10.2498 (4)0.4543 (2)0.6730 (2)0.0509 (5)
C20.1520 (3)0.7462 (2)0.6622 (2)0.0517 (5)
C30.3930 (4)0.8296 (3)0.7198 (3)0.0774 (8)
H3A0.40660.87640.81030.093*
H3B0.50000.76830.70770.093*
C40.4395 (15)0.9365 (9)0.6511 (10)0.074 (2)0.661 (14)
H4A0.50920.90020.57810.089*0.661 (14)
H4B0.54111.02380.70730.089*0.661 (14)
C50.2064 (11)0.9613 (7)0.6089 (10)0.073 (2)0.661 (14)
H5A0.20520.99340.53470.088*0.661 (14)
H5B0.16451.03120.67680.088*0.661 (14)
C60.0426 (4)0.8155 (2)0.5770 (2)0.0603 (6)
H6C0.10830.82530.59430.072*0.661 (14)
H6B0.02830.76110.48810.072*0.661 (14)
H6A0.07010.86220.61540.072*0.339 (14)
H6D0.03170.74670.49520.072*0.339 (14)
C4'0.409 (4)0.9642 (13)0.6854 (17)0.074 (2)0.339 (14)
H4C0.56320.99970.67420.089*0.339 (14)
H4D0.36751.03670.75120.089*0.339 (14)
C5'0.241 (2)0.9226 (17)0.5619 (16)0.073 (2)0.339 (14)
H5D0.30900.88040.49000.088*0.339 (14)
H5C0.19011.00420.54960.088*0.339 (14)
C70.0131 (4)0.2930 (2)0.8792 (2)0.0588 (6)
C80.2329 (4)0.3678 (2)0.9211 (2)0.0607 (6)
H8C0.25030.46310.97810.073*0.467 (14)
H8B0.30500.37250.84870.073*0.467 (14)
H8A0.24780.46910.95640.073*0.533 (14)
H8D0.31310.35020.84970.073*0.533 (14)
C9'0.335 (2)0.2757 (11)0.9903 (7)0.075 (3)0.467 (14)
H9C0.40800.21250.93370.090*0.467 (14)
H9D0.44960.33521.06380.090*0.467 (14)
C10'0.1445 (17)0.1908 (17)1.0324 (14)0.079 (3)0.467 (14)
H10A0.10680.24601.11070.095*0.467 (14)
H10B0.18150.10491.04290.095*0.467 (14)
C11'0.0457 (17)0.1591 (6)0.9191 (7)0.070 (3)0.467 (14)
H11C0.19470.13880.94280.083*0.467 (14)
H11D0.03330.07840.85010.083*0.467 (14)
C90.3302 (17)0.3089 (6)1.0216 (7)0.0582 (18)0.533 (14)
H9A0.48170.29341.01160.070*0.533 (14)
H9B0.33740.37131.10700.070*0.533 (14)
C100.1582 (12)0.1699 (13)0.9944 (14)0.079 (3)0.533 (14)
H10C0.16550.13821.06890.095*0.533 (14)
H10D0.18940.09750.92420.095*0.533 (14)
C110.0769 (13)0.1980 (11)0.9599 (10)0.066 (2)0.533 (14)
H11A0.18930.11160.91110.079*0.533 (14)
H11B0.13250.24671.03460.079*0.533 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0570 (4)0.0775 (5)0.0726 (4)0.0016 (3)0.0087 (3)0.0472 (4)
N10.0521 (11)0.0585 (11)0.0601 (11)0.0071 (9)0.0029 (9)0.0385 (9)
N20.0501 (11)0.0654 (12)0.0667 (12)0.0089 (9)0.0001 (9)0.0407 (10)
N30.0523 (11)0.0579 (11)0.0695 (12)0.0014 (9)0.0062 (9)0.0425 (10)
N40.0609 (12)0.0639 (12)0.0878 (14)0.0038 (9)0.0116 (11)0.0541 (11)
C10.0573 (13)0.0515 (12)0.0478 (12)0.0109 (10)0.0021 (10)0.0257 (10)
C20.0464 (12)0.0609 (13)0.0560 (13)0.0100 (10)0.0036 (10)0.0348 (11)
C30.0524 (15)0.0933 (19)0.0922 (19)0.0008 (13)0.0100 (13)0.0573 (16)
C40.056 (3)0.070 (3)0.095 (5)0.001 (2)0.002 (3)0.040 (4)
C50.064 (3)0.070 (3)0.093 (6)0.001 (3)0.003 (3)0.051 (3)
C60.0490 (13)0.0655 (14)0.0756 (15)0.0063 (11)0.0003 (11)0.0450 (13)
C4'0.056 (3)0.070 (3)0.095 (5)0.001 (2)0.002 (3)0.040 (4)
C5'0.064 (3)0.070 (3)0.093 (6)0.001 (3)0.003 (3)0.051 (3)
C70.0535 (13)0.0552 (13)0.0716 (15)0.0010 (10)0.0045 (11)0.0398 (12)
C80.0552 (14)0.0628 (14)0.0701 (15)0.0056 (11)0.0030 (11)0.0386 (12)
C9'0.067 (6)0.066 (4)0.091 (5)0.010 (4)0.020 (5)0.038 (4)
C10'0.082 (2)0.082 (4)0.077 (6)0.002 (2)0.014 (3)0.056 (4)
C11'0.059 (5)0.060 (5)0.105 (6)0.008 (4)0.004 (4)0.058 (5)
C90.051 (4)0.054 (3)0.067 (3)0.001 (3)0.005 (3)0.031 (3)
C100.082 (2)0.082 (4)0.077 (6)0.002 (2)0.014 (3)0.056 (4)
C110.051 (3)0.065 (4)0.094 (4)0.005 (3)0.003 (3)0.055 (4)
Geometric parameters (Å, º) top
S1—C11.660 (2)C4'—H4D0.9700
N1—C11.349 (3)C5'—H5D0.9700
N1—N21.386 (2)C5'—H5C0.9700
N1—H10.8600C7—C81.488 (3)
N2—C21.268 (3)C7—C111.523 (4)
N3—C11.349 (3)C7—C11'1.528 (4)
N3—N41.386 (2)C8—C91.518 (5)
N3—H30.8600C8—C9'1.532 (6)
N4—C71.273 (3)C8—H8C0.9700
C2—C61.492 (3)C8—H8B0.9700
C2—C31.502 (3)C8—H8A0.9700
C3—C41.498 (5)C8—H8D0.9700
C3—C4'1.505 (7)C9'—C10'1.507 (7)
C3—H3A0.9700C9'—H9C0.9700
C3—H3B0.9700C9'—H9D0.9700
C4—C51.517 (6)C10'—C11'1.516 (7)
C4—H4A0.9700C10'—H10A0.9700
C4—H4B0.9700C10'—H10B0.9700
C5—C61.536 (5)C11'—H11C0.9700
C5—H5A0.9700C11'—H11D0.9700
C5—H5B0.9700C9—C101.513 (7)
C6—C5'1.520 (7)C9—H9A0.9700
C6—H6C0.9700C9—H9B0.9700
C6—H6B0.9700C10—C111.523 (7)
C6—H6A0.9700C10—H10C0.9700
C6—H6D0.9700C10—H10D0.9700
C4'—C5'1.509 (8)C11—H11A0.9700
C4'—H4C0.9700C11—H11B0.9700
C1—N1—N2119.09 (16)C8—C7—C11109.8 (3)
C1—N1—H1120.5N4—C7—C11'121.1 (4)
N2—N1—H1120.5C8—C7—C11'107.8 (4)
C2—N2—N1118.56 (17)C11—C7—C11'22.1 (4)
C1—N3—N4121.17 (18)C7—C8—C9106.2 (4)
C1—N3—H3119.4C7—C8—C9'103.3 (5)
N4—N3—H3119.4C9—C8—C9'15.73 (7)
C7—N4—N3114.60 (18)C7—C8—H8C111.1
N1—C1—N3113.33 (19)C9—C8—H8C96.0
N1—C1—S1121.64 (15)C9'—C8—H8C111.1
N3—C1—S1125.03 (16)C7—C8—H8B111.1
N2—C2—C6129.81 (19)C9—C8—H8B122.3
N2—C2—C3120.75 (18)C9'—C8—H8B111.1
C6—C2—C3109.43 (18)H8C—C8—H8B109.1
C4—C3—C2105.4 (4)C7—C8—H8A110.4
C4—C3—C4'18.5 (10)C9—C8—H8A110.6
C2—C3—C4'104.6 (8)C9'—C8—H8A125.1
C4—C3—H3A110.7H8C—C8—H8A15.7
C2—C3—H3A110.7H8B—C8—H8A95.6
C4'—C3—H3A94.4C7—C8—H8D110.5
C4—C3—H3B110.7C9—C8—H8D110.5
C2—C3—H3B110.7C9'—C8—H8D97.9
C4'—C3—H3B126.4H8C—C8—H8D120.9
H3A—C3—H3B108.8H8B—C8—H8D14.4
C3—C4—C5105.0 (6)H8A—C8—H8D108.6
C3—C4—H4A110.7C10'—C9'—C8108.7 (10)
C5—C4—H4A110.7C10'—C9'—H9C110.0
C3—C4—H4B110.7C8—C9'—H9C110.0
C5—C4—H4B110.7C10'—C9'—H9D110.0
H4A—C4—H4B108.8C8—C9'—H9D110.0
C4—C5—C6104.0 (6)H9C—C9'—H9D108.3
C4—C5—H5A111.0C10'—C9'—H9A131.9
C6—C5—H5A111.0C8—C9'—H9A117.9
C4—C5—H5B111.0H9C—C9'—H9A65.5
C6—C5—H5B111.0H9D—C9'—H9A43.5
H5A—C5—H5B109.0C10'—C9'—H9B80.7
C2—C6—C5'104.2 (7)C8—C9'—H9B91.0
C2—C6—C5104.2 (3)H9C—C9'—H9B150.6
C5'—C6—C524.2 (6)H9D—C9'—H9B43.3
C2—C6—H6C110.9H9A—C9'—H9B86.8
C5'—C6—H6C130.4C9'—C10'—C11'99.5 (13)
C5—C6—H6C110.9C9'—C10'—H10A111.9
C2—C6—H6B110.9C11'—C10'—H10A111.9
C5'—C6—H6B89.0C9'—C10'—H10B111.9
C5—C6—H6B110.9C11'—C10'—H10B111.9
H6C—C6—H6B108.9H10A—C10'—H10B109.6
C2—C6—H6A110.9C10'—C11'—C7105.3 (9)
C5'—C6—H6A110.9C10'—C11'—H11C110.7
C5—C6—H6A89.0C7—C11'—H11C110.7
H6C—C6—H6A23.3C10'—C11'—H11D110.7
H6B—C6—H6A126.6C7—C11'—H11D110.7
C2—C6—H6D110.9H11C—C11'—H11D108.8
C5'—C6—H6D110.9C10—C9—C8102.2 (8)
C5—C6—H6D130.4C10—C9—H9A111.1
H6C—C6—H6D88.2C8—C9—H9A111.4
H6B—C6—H6D23.2C10—C9—H9B111.3
H6A—C6—H6D108.9C8—C9—H9B111.4
C3—C4'—C5'104.6 (11)H9A—C9—H9B109.3
C3—C4'—H4C110.8C9—C10—C11106.4 (11)
C5'—C4'—H4C110.8C9—C10—H10C110.5
C3—C4'—H4D110.8C11—C10—H10C110.5
C5'—C4'—H4D110.8C9—C10—H10D110.5
H4C—C4'—H4D108.9C11—C10—H10D110.5
C4'—C5'—C6104.2 (12)H10C—C10—H10D108.7
C4'—C5'—H5D110.9C7—C11—C1098.5 (8)
C6—C5'—H5D110.9C7—C11—H11A112.1
C4'—C5'—H5C110.9C10—C11—H11A112.1
C6—C5'—H5C110.9C7—C11—H11B112.1
H5D—C5'—H5C108.9C10—C11—H11B112.1
N4—C7—C8129.96 (18)H11A—C11—H11B109.7
N4—C7—C11119.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.862.172.558 (3)108
N1—H1···S1i0.862.703.547 (3)170
Symmetry code: (i) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H18N4S
Mr238.35
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)6.0344 (19), 10.114 (3), 11.137 (3)
α, β, γ (°)106.579 (5), 96.897 (5), 100.574 (5)
V3)629.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3340, 2212, 1673
Rint0.013
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.03
No. of reflections2212
No. of parameters172
No. of restraints53
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: SMART (Siemens, 1996) [or APEX2], SAINT (Siemens, 1996) [or APEX2], SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.862.172.558 (3)107.8
N1—H1···S1i0.862.703.547 (3)170.4
Symmetry code: (i) x1, y+1, z+1.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University for financial support (grant No. Y06-2-10).

References

First citationBacchi, A., Bonini, A., Carcelli, M., Ferraro, F., Leporati, E., Pelizzi, C. & Pelizzi, G. (1996). J. Chem. Soc. Dalton. Trans. pp. 2699–2705.  Google Scholar
First citationChantrapromma, S., Razak, I. A., Fun, H.-K., Karalai, C., Zhang, H., Xie, F.-X., Tian, Y.-P., Ma, W., Zhang, Y.-H. & Ni, S.-S. (2001). Acta Cryst. C57, 289–290.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds