organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Cyclo­hexyl­­idene-2-hy­droxy­benzo­hydrazide

aLiaocheng Vocational and Technical College, Liaocheng, 252059, People's Republic of China
*Correspondence e-mail: lcldy@163.com

(Received 15 February 2009; accepted 2 March 2009; online 6 March 2009)

In the title mol­ecule, C13H16N2O2, the cyclo­hexyl­idene ring adopts a chair conformation. The intra­molecular N—H⋯O hydrogen bond influences the mol­ecular conformation: the benzene ring and the mean plane of the central C(O)NHN fragment form a dihedral angle of 4.9 (1) Å. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains propagated along [001].

Related literature

For properties of Shiff-base derivatives, see Sreeja et al. (2003[Sreeja, P. B., Sreekanth, A., Nayar, C. R., Prathapachandra Kurup, M. R., Usman, A., Razak, I. A., Chantrapromma, S. & Fun, H. K. (2003). J. Mol. Struct. 645, 221-226.]). For a related structure, see Luo et al. (2007[Luo, Z.-G. (2007). Acta Cryst. E63, o3672.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N2O2

  • Mr = 232.28

  • Monoclinic, C c

  • a = 18.376 (2) Å

  • b = 5.3386 (10) Å

  • c = 12.9435 (15) Å

  • β = 102.241 (2)°

  • V = 1240.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.39 × 0.29 × 0.27 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.977

  • 2969 measured reflections

  • 1090 independent reflections

  • 898 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.138

  • S = 1.08

  • 1090 reflections

  • 154 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.97 2.655 (4) 136
O2—H2⋯O1i 0.82 2.15 2.704 (4) 125
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chemistry of Schiff bases has been intensively investigated in recent years, owing to their coordination properties and diverse applications. Schiff base derivatives and their complexes have been studied for their antifungal and antibacterial activ- ity, and as antiviral drugs (Sreeja et al., 2003). In this paper, we present the crystal structure of the title compound, (I), which was synthesized by the reaction of cyclohexanone and salicyloyl hydrazide.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the compound reported by Luo et al. (2007). The cyclohexylidene ring adopts a chair conformation. Intramolecular N—H···O hydrogen bond (Table 1) influences the molecular conformationthe - dihedral angle between the benzene ring and the plane C1/N1/N2 is 4.9 (1) Å. The plane C1/N1/N2 and ring C8-C13 form a dihedral angle of 37.7 (3) Å. Intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into chains propagated in direction [001].

Related literature top

For properties of Shiff-base derivatives, see Sreeja et al. (2003). For the crystal structure of related compound, see Luo et al. (2007).

Experimental top

Salicyloyl hydrazide (5 mmol) and cyclohexanone (5 mmol),20 ml e nthanol were mixed in 50 ml flash. After stirring 30 min at 353 K, the mixture then cooling slowly to room temperature and affording the title compound, then recrystallized from ethanol, affording the title compound as a red crystalline solid. Elemental analysis: calculated for C13H16N2O2: C 67.22, H 6.94, N 12.06%; found: C 67.29, H 6.85, N 12.24%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 Å, O—H 0.82 Å and C—H=0.93–0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2-1.5Ueq of the parent atom. In the absence of any significant anomalous scatterers in the molecule, 330 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atomic numbering scheme and 30% probability displacement ellipsoids.
(I) top
Crystal data top
C13H16N2O2F(000) = 496
Mr = 232.28Dx = 1.243 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 18.376 (2) ÅCell parameters from 1322 reflections
b = 5.3386 (10) Åθ = 3.2–27.5°
c = 12.9435 (15) ŵ = 0.09 mm1
β = 102.241 (2)°T = 293 K
V = 1240.9 (3) Å3Block, red
Z = 40.39 × 0.29 × 0.27 mm
Data collection top
Bruker SMART Apex CCD area-detector
diffractometer
1090 independent reflections
Radiation source: fine-focus sealed tube898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2111
Tmin = 0.968, Tmax = 0.977k = 66
2969 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0866P)2 + 0.3353P]
where P = (Fo2 + 2Fc2)/3
1090 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C13H16N2O2V = 1240.9 (3) Å3
Mr = 232.28Z = 4
Monoclinic, CcMo Kα radiation
a = 18.376 (2) ŵ = 0.09 mm1
b = 5.3386 (10) ÅT = 293 K
c = 12.9435 (15) Å0.39 × 0.29 × 0.27 mm
β = 102.241 (2)°
Data collection top
Bruker SMART Apex CCD area-detector
diffractometer
1090 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
898 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.977Rint = 0.024
2969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
1090 reflectionsΔρmin = 0.15 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18964 (17)0.6052 (6)0.1521 (2)0.0432 (8)
H10.17760.61790.21260.052*
N20.15740 (18)0.7600 (7)0.0684 (2)0.0475 (8)
O10.2584 (2)0.4124 (5)0.0501 (2)0.0577 (8)
O20.20359 (16)0.4399 (5)0.3488 (2)0.0511 (8)
H20.19650.41520.40840.077*
C10.24015 (19)0.4354 (7)0.1362 (2)0.0371 (8)
C20.27283 (19)0.2675 (7)0.2264 (3)0.0369 (8)
C30.25343 (18)0.2669 (6)0.3267 (3)0.0370 (8)
C40.2836 (2)0.0878 (7)0.4024 (3)0.0465 (10)
H40.26990.08590.46750.056*
C50.3333 (2)0.0845 (8)0.3810 (3)0.0524 (11)
H50.35330.20320.43170.063*
C60.3545 (2)0.0838 (7)0.2838 (3)0.0505 (11)
H60.38900.19970.26990.061*
C70.3240 (2)0.0891 (7)0.2088 (3)0.0422 (9)
H70.33800.08710.14390.051*
C80.1097 (3)0.9202 (8)0.0854 (3)0.0531 (11)
C90.0802 (3)0.9560 (10)0.1848 (4)0.0681 (13)
H9A0.09930.82410.23480.082*
H9B0.09761.11510.21700.082*
C100.0029 (3)0.9511 (13)0.1616 (5)0.0863 (18)
H10A0.02000.99410.22530.104*
H10B0.01980.78240.14150.104*
C110.0380 (3)1.1323 (12)0.0730 (5)0.0874 (17)
H11A0.09171.11230.05720.105*
H11B0.02661.30340.09610.105*
C120.0081 (3)1.0816 (13)0.0264 (5)0.0849 (17)
H12A0.02530.91840.05430.102*
H12B0.02801.20590.07950.102*
C130.0746 (3)1.0884 (9)0.0060 (4)0.0690 (14)
H13A0.09141.25910.00960.083*
H13B0.09081.03540.06910.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0527 (19)0.059 (2)0.0189 (15)0.0072 (17)0.0087 (13)0.0043 (13)
N20.0493 (18)0.067 (2)0.0256 (16)0.0066 (17)0.0075 (13)0.0104 (14)
O10.082 (2)0.0684 (18)0.0267 (14)0.0165 (16)0.0210 (13)0.0059 (12)
O20.0656 (18)0.0681 (18)0.0219 (13)0.0188 (15)0.0142 (12)0.0037 (12)
C10.044 (2)0.046 (2)0.0212 (19)0.0032 (16)0.0065 (15)0.0014 (14)
C20.0394 (19)0.046 (2)0.0239 (18)0.0062 (16)0.0031 (14)0.0038 (14)
C30.0407 (19)0.0477 (19)0.0219 (17)0.0004 (18)0.0048 (14)0.0020 (15)
C40.052 (2)0.059 (2)0.029 (2)0.004 (2)0.0115 (17)0.0057 (17)
C50.056 (3)0.056 (2)0.043 (3)0.008 (2)0.0052 (19)0.0111 (18)
C60.052 (2)0.055 (2)0.045 (3)0.0075 (19)0.014 (2)0.0001 (18)
C70.048 (2)0.051 (2)0.0291 (19)0.0004 (18)0.0118 (16)0.0045 (16)
C80.053 (2)0.073 (3)0.033 (2)0.002 (2)0.0079 (18)0.0075 (19)
C90.075 (3)0.086 (3)0.043 (3)0.027 (3)0.012 (2)0.005 (2)
C100.082 (4)0.110 (5)0.076 (4)0.015 (3)0.037 (3)0.001 (3)
C110.072 (3)0.116 (4)0.072 (4)0.034 (3)0.008 (3)0.001 (3)
C120.075 (4)0.115 (5)0.057 (3)0.023 (3)0.002 (3)0.003 (3)
C130.075 (3)0.076 (3)0.053 (3)0.007 (3)0.007 (2)0.016 (2)
Geometric parameters (Å, º) top
N1—C11.344 (5)C7—H70.9300
N1—N21.391 (4)C8—C91.510 (6)
N1—H10.8600C8—C131.516 (6)
N2—C81.277 (5)C9—C101.493 (8)
O1—C11.236 (5)C9—H9A0.9700
O2—C31.373 (4)C9—H9B0.9700
O2—H20.8200C10—C111.534 (9)
C1—C21.493 (5)C10—H10A0.9700
C2—C71.391 (5)C10—H10B0.9700
C2—C31.417 (4)C11—C121.526 (9)
C3—C41.398 (5)C11—H11A0.9700
C4—C51.365 (6)C11—H11B0.9700
C4—H40.9300C12—C131.486 (8)
C5—C61.394 (6)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—C71.370 (6)C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C1—N1—N2118.4 (3)C10—C9—H9A109.4
C1—N1—H1120.8C8—C9—H9A109.4
N2—N1—H1120.8C10—C9—H9B109.4
C8—N2—N1117.3 (3)C8—C9—H9B109.4
C3—O2—H2109.5H9A—C9—H9B108.0
O1—C1—N1122.2 (3)C9—C10—C11112.9 (5)
O1—C1—C2120.3 (3)C9—C10—H10A109.0
N1—C1—C2117.5 (3)C11—C10—H10A109.0
C7—C2—C3117.3 (3)C9—C10—H10B109.0
C7—C2—C1117.2 (3)C11—C10—H10B109.0
C3—C2—C1125.4 (3)H10A—C10—H10B107.8
O2—C3—C4119.8 (3)C12—C11—C10110.4 (5)
O2—C3—C2119.9 (3)C12—C11—H11A109.6
C4—C3—C2120.3 (3)C10—C11—H11A109.6
C5—C4—C3120.1 (4)C12—C11—H11B109.6
C5—C4—H4119.9C10—C11—H11B109.6
C3—C4—H4119.9H11A—C11—H11B108.1
C4—C5—C6120.5 (4)C13—C12—C11112.5 (5)
C4—C5—H5119.7C13—C12—H12A109.1
C6—C5—H5119.7C11—C12—H12A109.1
C7—C6—C5119.4 (4)C13—C12—H12B109.1
C7—C6—H6120.3C11—C12—H12B109.1
C5—C6—H6120.3H12A—C12—H12B107.8
C6—C7—C2122.3 (4)C12—C13—C8112.0 (5)
C6—C7—H7118.8C12—C13—H13A109.2
C2—C7—H7118.8C8—C13—H13A109.2
N2—C8—C9128.0 (4)C12—C13—H13B109.2
N2—C8—C13117.1 (4)C8—C13—H13B109.2
C9—C8—C13114.8 (4)H13A—C13—H13B107.9
C10—C9—C8111.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.972.655 (4)136
O2—H2···O1i0.822.152.704 (4)125
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H16N2O2
Mr232.28
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)18.376 (2), 5.3386 (10), 12.9435 (15)
β (°) 102.241 (2)
V3)1240.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.29 × 0.27
Data collection
DiffractometerBruker SMART Apex CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
2969, 1090, 898
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 1.08
No. of reflections1090
No. of parameters154
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.15

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.972.655 (4)135.7
O2—H2···O1i0.822.152.704 (4)125.0
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

The author acknowledges the support of the National Natural Science Foundation of Liaocheng Vocational and Technical College (grant No. 081040).

References

First citationLuo, Z.-G. (2007). Acta Cryst. E63, o3672.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSreeja, P. B., Sreekanth, A., Nayar, C. R., Prathapachandra Kurup, M. R., Usman, A., Razak, I. A., Chantrapromma, S. & Fun, H. K. (2003). J. Mol. Struct. 645, 221–226.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds