organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 6,9,17,20-tetra­bromo-2,13-di­oxo­hexa­cyclo­[10.10.2.03,24.05,10.014,23.016,21]tetra­cosa-5,7,9,16,18,20-hexa­ene-23,24-di­carboxyl­ate

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: chemzyp@gmail.com

(Received 20 February 2009; accepted 14 March 2009; online 19 March 2009)

In the title mol­ecule, C26H22Br4N4O6, the dihedral angle between the aromatic rings is 30.0 (1)°. One ethyl fragment is disordered between two positions in a 1:1 ratio. The crystal packing exhibits weak inter­molecular C—H⋯O hydrogen bonds and short Br⋯O contacts of 3.349 (6) Å.

Related literature

For applications of glycoluril derivatives, see: Wu et al. (2002[Wu, A., Chakraborty, A., Witl, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem. 67, 5817-5830.]); Lee et al. (2003[Lee, J. W., Samal, S., Selvapalam, N. & Kim, K. (2003). Acc. Chem. Res. 36, 621-630.]); Rowan et al. (1999[Rowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995-1006.]); Hof et al. (2002[Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Chem. Commun. pp. 2228-2229.]). For details of the synthesis, see: Chen et al. (2007[Chen, Y., She, N., Meng, G., Yin, G., Wu, A. & Isaacs, L. (2007). Org. Lett. 9, 1899-1912.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22Br4N4O6

  • Mr = 806.12

  • Monoclinic, P 21 /c

  • a = 12.3545 (16) Å

  • b = 16.256 (2) Å

  • c = 13.8793 (18) Å

  • β = 93.396 (2)°

  • V = 2782.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.83 mm−1

  • T = 292 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: none

  • 18842 measured reflections

  • 6319 independent reflections

  • 3100 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.136

  • S = 1.00

  • 6319 reflections

  • 371 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2ii 0.93 2.36 3.278 (7) 172
C19—H19A⋯O3iii 0.97 2.27 3.227 (7) 169
C25—H25⋯O2iv 0.93 2.56 3.309 (7) 138
Symmetry codes: (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Glycoluril derivatives have manifested applications in many fields, such as explosives, slow-release fertilizers, crosslinkers, stabilizers of organic compounds agaist photodegratation and reagents in combinational chemistry (Wu et al., 2002). They also play an important role in building block for the preparation of a wide variety of supramolecular assemble, including cucurbit[n] uril homologues (n = 5, 7, 8 and 10) and their derivatives (Lee et al., 2003), molecular clips and baskets (Rowan et al., 1999), and molecular capsules (Hof et al., 2002).

Herein, we present the X-ray crystal structure of the title compound, which is derivated from diethoxycarbonyl glycoluril with dibromo-substituted benzene ring fusing to the side-wall of the molecular clip. The distance between the two carbonyl oxygen atoms (O1—O2) of the glycoluril fragment is 5.498 (7) Å. The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds (Table 2) and short Br···O contacts of 3.349 (6) Å (Table 1).

Related literature top

For useful applications of glycoluril derivatives, see: Wu et al. (2002); Lee et al. (2003); Rowan et al. (1999); Hof et al. (2002). For details of the synthesis, see: Chen et al. (2007).

Experimental top

The title compound was synthesized acoording to the procedure reported by Chen et al. (2007). Crystals appropriate for data collection were obtained by slow evaporation of a methanol-chloroform (1:30 v/v) solution at 283 K.

Refinement top

All H atoms were initially located in a difference Fourier map and then included in the refinement with constrained bond lengths and isotropic displacement parameters: C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms, C—H = 0.97 Å and Uiso(H) = 1.2 Ueq(C) for methylene H atoms, C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius. Only major parts of disordered atoms are shown.
Diethyl 6,9,17,20-tetrabromo-2,13- dioxohexacyclo[10.10.2.03,24.05,10.014,23.016,21]tetracosa- 5,7,9,16,18,20-hexaene-23,24-dicarboxylate top
Crystal data top
C26H22Br4N4O6F(000) = 1576
Mr = 806.12Dx = 1.924 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p/2ybcCell parameters from 2976 reflections
a = 12.3545 (16) Åθ = 2.6–20.7°
b = 16.256 (2) ŵ = 5.83 mm1
c = 13.8793 (18) ÅT = 292 K
β = 93.396 (2)°Block, colourless
V = 2782.5 (6) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3100 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
ϕ and ω scansh = 1215
18842 measured reflectionsk = 2121
6319 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.6576P]
where P = (Fo2 + 2Fc2)/3
6319 reflections(Δ/σ)max = 0.002
371 parametersΔρmax = 0.56 e Å3
4 restraintsΔρmin = 0.45 e Å3
Crystal data top
C26H22Br4N4O6V = 2782.5 (6) Å3
Mr = 806.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3545 (16) ŵ = 5.83 mm1
b = 16.256 (2) ÅT = 292 K
c = 13.8793 (18) Å0.30 × 0.20 × 0.20 mm
β = 93.396 (2)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3100 reflections with I > 2σ(I)
18842 measured reflectionsRint = 0.056
6319 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0544 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.00Δρmax = 0.56 e Å3
6319 reflectionsΔρmin = 0.45 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.61969 (5)0.07496 (4)0.61428 (4)0.0694 (2)
Br20.25324 (7)0.20733 (4)0.66394 (5)0.0933 (3)
Br30.55658 (5)0.17500 (5)1.06195 (5)0.0857 (3)
Br40.15555 (6)0.08284 (4)1.09507 (5)0.0769 (2)
C10.3996 (4)0.0218 (3)0.6329 (3)0.0433 (13)
C20.5079 (4)0.0014 (4)0.6327 (3)0.0508 (14)
C30.5384 (5)0.0833 (4)0.6472 (4)0.0653 (17)
H30.61130.09790.65000.078*
C40.4613 (6)0.1412 (4)0.6572 (4)0.0678 (17)
H40.48130.19610.66480.081*
C50.3539 (5)0.1196 (4)0.6564 (4)0.0588 (16)
C60.3195 (4)0.0390 (3)0.6449 (3)0.0462 (13)
C70.2015 (4)0.0159 (3)0.6420 (4)0.0526 (14)
H7A0.18140.00810.57950.063*
H7B0.15880.06550.64820.063*
C80.3652 (4)0.1101 (3)0.6156 (3)0.0469 (13)
H8A0.42910.14270.60470.056*
H8B0.31800.11250.55730.056*
C90.1494 (4)0.0176 (4)0.8077 (4)0.0449 (13)
C100.3658 (4)0.1654 (3)0.7802 (4)0.0436 (12)
C110.1973 (4)0.1283 (3)0.7108 (3)0.0427 (12)
C120.1199 (5)0.1683 (4)0.6322 (4)0.0649 (17)
C130.0687 (11)0.1651 (10)0.5741 (10)0.080 (4)0.541 (11)
H13A0.11200.11540.56760.096*0.541 (11)
H13B0.04140.17910.51210.096*0.541 (11)
C140.1315 (18)0.2345 (11)0.6141 (16)0.107 (6)0.541 (11)
H14A0.14310.22400.68080.160*0.541 (11)
H14B0.20030.23930.57850.160*0.541 (11)
H14C0.09160.28480.60870.160*0.541 (11)
C150.1837 (4)0.1587 (3)0.8168 (3)0.0441 (13)
C160.1066 (5)0.2326 (4)0.8243 (4)0.0523 (14)
C170.0825 (7)0.3716 (5)0.7716 (7)0.109 (3)
H17A0.08860.39390.70730.131*
H17B0.00710.35750.77850.131*
C180.1129 (7)0.4310 (5)0.8384 (8)0.155 (4)
H18A0.08640.41650.89980.232*
H18B0.08290.48300.81790.232*
H18C0.19050.43480.84410.232*
C190.3251 (4)0.1945 (3)0.9489 (4)0.0485 (13)
H19A0.27100.22920.97640.058*
H19B0.39290.22480.95190.058*
C200.1437 (4)0.0819 (3)0.9678 (3)0.0507 (14)
H20A0.09310.03950.98500.061*
H20B0.11800.13360.99260.061*
C210.2533 (4)0.0630 (3)1.0178 (3)0.0474 (13)
C220.3400 (4)0.1176 (3)1.0107 (3)0.0463 (13)
C230.4376 (4)0.1014 (4)1.0606 (4)0.0548 (15)
C240.4532 (5)0.0293 (4)1.1130 (4)0.0637 (17)
H240.52050.01811.14380.076*
C250.3699 (5)0.0252 (4)1.1194 (4)0.0612 (16)
H250.37990.07381.15430.073*
C260.2702 (4)0.0073 (4)1.0733 (4)0.0541 (14)
C13'0.0469 (11)0.2140 (12)0.5903 (17)0.080 (4)0.459 (11)
H13C0.03120.21140.52270.096*0.459 (11)
H13D0.03800.27010.61330.096*0.459 (11)
C14'0.1574 (15)0.1810 (14)0.607 (2)0.107 (6)0.459 (11)
H14D0.16350.12570.58300.160*0.459 (11)
H14E0.21140.21490.57430.160*0.459 (11)
H14F0.16810.18110.67510.160*0.459 (11)
N10.1740 (3)0.0420 (3)0.7170 (3)0.0441 (10)
N20.3088 (3)0.1470 (2)0.6948 (3)0.0433 (10)
N30.1414 (3)0.0873 (3)0.8634 (3)0.0431 (10)
N40.2926 (3)0.1793 (2)0.8489 (3)0.0432 (10)
O10.1336 (3)0.0520 (2)0.8333 (3)0.0616 (10)
O20.4638 (3)0.1696 (2)0.7916 (3)0.0531 (9)
O30.1497 (4)0.2044 (4)0.5651 (4)0.130 (2)
O40.0196 (3)0.1562 (3)0.6488 (3)0.0963 (17)
O50.1485 (4)0.2968 (3)0.7819 (4)0.0913 (15)
O60.0233 (3)0.2313 (3)0.8621 (3)0.0691 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0487 (4)0.0843 (5)0.0763 (4)0.0001 (3)0.0146 (3)0.0019 (3)
Br20.1236 (7)0.0512 (5)0.1055 (6)0.0248 (4)0.0106 (5)0.0040 (4)
Br30.0615 (5)0.1006 (6)0.0927 (5)0.0176 (4)0.0144 (4)0.0126 (4)
Br40.0786 (5)0.0652 (5)0.0865 (5)0.0051 (4)0.0010 (4)0.0304 (4)
C10.052 (3)0.042 (3)0.035 (3)0.006 (3)0.001 (2)0.000 (2)
C20.049 (4)0.059 (4)0.045 (3)0.009 (3)0.007 (2)0.002 (3)
C30.069 (4)0.068 (5)0.059 (3)0.020 (4)0.002 (3)0.010 (3)
C40.083 (5)0.048 (4)0.073 (4)0.017 (4)0.008 (4)0.003 (3)
C50.075 (5)0.052 (4)0.049 (3)0.004 (3)0.003 (3)0.003 (3)
C60.058 (4)0.041 (4)0.040 (3)0.004 (3)0.006 (2)0.002 (2)
C70.050 (4)0.057 (4)0.051 (3)0.015 (3)0.001 (3)0.002 (3)
C80.040 (3)0.052 (4)0.049 (3)0.001 (3)0.011 (2)0.007 (3)
C90.031 (3)0.045 (4)0.057 (3)0.007 (3)0.004 (2)0.008 (3)
C100.043 (4)0.027 (3)0.060 (3)0.002 (2)0.001 (3)0.005 (2)
C110.034 (3)0.040 (3)0.054 (3)0.002 (2)0.005 (2)0.009 (2)
C120.050 (4)0.087 (5)0.058 (4)0.017 (3)0.005 (3)0.025 (3)
C130.042 (7)0.111 (14)0.087 (7)0.004 (8)0.006 (5)0.024 (10)
C140.111 (12)0.102 (15)0.104 (8)0.051 (13)0.020 (8)0.006 (14)
C150.038 (3)0.039 (3)0.057 (3)0.009 (2)0.010 (2)0.006 (3)
C160.052 (4)0.046 (4)0.059 (3)0.013 (3)0.003 (3)0.010 (3)
C170.100 (6)0.053 (5)0.173 (8)0.035 (5)0.001 (6)0.015 (5)
C180.119 (8)0.082 (7)0.259 (13)0.024 (6)0.031 (8)0.033 (8)
C190.041 (3)0.043 (3)0.062 (3)0.000 (3)0.005 (3)0.006 (3)
C200.043 (3)0.050 (4)0.059 (3)0.005 (3)0.008 (3)0.011 (3)
C210.048 (3)0.048 (4)0.046 (3)0.007 (3)0.005 (2)0.002 (3)
C220.047 (3)0.045 (3)0.048 (3)0.004 (3)0.008 (3)0.005 (3)
C230.048 (4)0.062 (4)0.053 (3)0.004 (3)0.000 (3)0.015 (3)
C240.059 (4)0.086 (5)0.045 (3)0.012 (4)0.004 (3)0.000 (3)
C250.068 (4)0.062 (4)0.054 (3)0.010 (3)0.003 (3)0.007 (3)
C260.051 (4)0.059 (4)0.052 (3)0.001 (3)0.004 (3)0.003 (3)
C13'0.042 (7)0.111 (14)0.087 (7)0.004 (8)0.006 (5)0.024 (10)
C14'0.111 (12)0.102 (15)0.104 (8)0.051 (13)0.020 (8)0.006 (14)
N10.042 (3)0.042 (3)0.048 (3)0.009 (2)0.0029 (19)0.002 (2)
N20.035 (3)0.040 (3)0.056 (3)0.000 (2)0.010 (2)0.006 (2)
N30.042 (3)0.039 (3)0.049 (2)0.000 (2)0.0075 (19)0.006 (2)
N40.034 (2)0.043 (3)0.053 (3)0.001 (2)0.004 (2)0.002 (2)
O10.073 (3)0.045 (3)0.067 (2)0.016 (2)0.001 (2)0.009 (2)
O20.036 (2)0.048 (2)0.076 (2)0.0035 (17)0.0042 (18)0.0036 (18)
O30.066 (3)0.193 (6)0.132 (4)0.024 (3)0.012 (3)0.115 (4)
O40.036 (3)0.176 (5)0.076 (3)0.017 (3)0.003 (2)0.049 (3)
O50.079 (3)0.046 (3)0.152 (4)0.023 (2)0.031 (3)0.031 (3)
O60.052 (3)0.073 (3)0.083 (3)0.019 (2)0.015 (2)0.007 (2)
Geometric parameters (Å, º) top
Br1—C21.886 (6)C14—H14B0.9600
Br2—C51.899 (6)C14—H14C0.9600
Br3—C231.895 (6)C15—N41.432 (6)
Br4—C261.912 (6)C15—N31.442 (6)
C1—C21.391 (6)C15—C161.540 (7)
C1—C61.415 (7)C16—O61.183 (6)
C1—C81.513 (7)C16—O51.320 (7)
C2—C31.394 (8)C17—C181.374 (11)
C3—C41.352 (8)C17—O51.466 (7)
C3—H30.9300C17—H17A0.9700
C4—C51.373 (8)C17—H17B0.9700
C4—H40.9300C18—H18A0.9600
C5—C61.382 (7)C18—H18B0.9600
C6—C71.504 (7)C18—H18C0.9600
C7—N11.458 (6)C19—N41.444 (6)
C7—H7A0.9700C19—C221.522 (7)
C7—H7B0.9700C19—H19A0.9700
C8—N21.464 (6)C19—H19B0.9700
C8—H8A0.9700C20—N31.449 (6)
C8—H8B0.9700C20—C211.516 (7)
C9—O11.205 (6)C20—H20A0.9700
C9—N11.370 (6)C20—H20B0.9700
C9—N31.379 (6)C21—C261.386 (7)
C10—O21.213 (5)C21—C221.399 (7)
C10—N41.371 (6)C22—C231.380 (7)
C10—N21.376 (6)C23—C241.387 (8)
C11—N11.437 (6)C24—C251.365 (8)
C11—N21.441 (6)C24—H240.9300
C11—C121.550 (7)C25—C261.386 (7)
C11—C151.571 (7)C25—H250.9300
C12—O31.178 (6)C13'—O41.461 (8)
C12—O41.289 (6)C13'—C14'1.498 (9)
C13—O41.466 (8)C13'—H13C0.9700
C13—C141.496 (9)C13'—H13D0.9700
C13—H13A0.9700C14'—H14D0.9600
C13—H13B0.9700C14'—H14E0.9600
C14—H14A0.9600C14'—H14F0.9600
Br4···O6i3.349 (6)
C2—C1—C6119.4 (5)H17A—C17—H17B107.8
C2—C1—C8121.2 (5)C17—C18—H18A109.5
C6—C1—C8119.3 (5)C17—C18—H18B109.5
C1—C2—C3120.6 (5)H18A—C18—H18B109.5
C1—C2—Br1122.3 (4)C17—C18—H18C109.5
C3—C2—Br1117.0 (4)H18A—C18—H18C109.5
C4—C3—C2119.6 (6)H18B—C18—H18C109.5
C4—C3—H3120.2N4—C19—C22114.8 (4)
C2—C3—H3120.2N4—C19—H19A108.6
C3—C4—C5120.5 (6)C22—C19—H19A108.6
C3—C4—H4119.8N4—C19—H19B108.6
C5—C4—H4119.8C22—C19—H19B108.6
C4—C5—C6122.3 (6)H19A—C19—H19B107.6
C4—C5—Br2116.3 (5)N3—C20—C21115.7 (4)
C6—C5—Br2121.3 (5)N3—C20—H20A108.3
C5—C6—C1117.5 (5)C21—C20—H20A108.3
C5—C6—C7122.1 (5)N3—C20—H20B108.3
C1—C6—C7120.4 (5)C21—C20—H20B108.3
N1—C7—C6114.1 (4)H20A—C20—H20B107.4
N1—C7—H7A108.7C26—C21—C22118.1 (5)
C6—C7—H7A108.7C26—C21—C20121.5 (5)
N1—C7—H7B108.7C22—C21—C20120.4 (5)
C6—C7—H7B108.7C23—C22—C21119.6 (5)
H7A—C7—H7B107.6C23—C22—C19120.8 (5)
N2—C8—C1114.2 (4)C21—C22—C19119.6 (5)
N2—C8—H8A108.7C22—C23—C24121.0 (5)
C1—C8—H8A108.7C22—C23—Br3122.6 (5)
N2—C8—H8B108.7C24—C23—Br3116.4 (4)
C1—C8—H8B108.7C25—C24—C23120.1 (5)
H8A—C8—H8B107.6C25—C24—H24120.0
O1—C9—N1126.2 (5)C23—C24—H24120.0
O1—C9—N3126.0 (5)C24—C25—C26119.1 (6)
N1—C9—N3107.8 (5)C24—C25—H25120.5
O2—C10—N4126.5 (5)C26—C25—H25120.5
O2—C10—N2125.5 (5)C25—C26—C21122.1 (5)
N4—C10—N2108.0 (4)C25—C26—Br4116.0 (4)
N1—C11—N2114.3 (4)C21—C26—Br4121.9 (4)
N1—C11—C12109.5 (4)O4—C13'—C14'99.8 (13)
N2—C11—C12111.0 (4)O4—C13'—H13C111.8
N1—C11—C15102.6 (4)C14'—C13'—H13C111.8
N2—C11—C15103.6 (4)O4—C13'—H13D111.8
C12—C11—C15115.6 (4)C14'—C13'—H13D111.8
O3—C12—O4124.5 (5)H13C—C13'—H13D109.5
O3—C12—C11123.8 (6)C13'—C14'—H14D109.5
O4—C12—C11111.7 (5)C13'—C14'—H14E109.5
O4—C13—C14101.1 (12)H14D—C14'—H14E109.5
O4—C13—H13A111.6C13'—C14'—H14F109.5
C14—C13—H13A111.5H14D—C14'—H14F109.5
O4—C13—H13B111.6H14E—C14'—H14F109.5
C14—C13—H13B111.6C9—N1—C11113.2 (4)
H13A—C13—H13B109.4C9—N1—C7122.9 (4)
N4—C15—N3114.0 (4)C11—N1—C7122.1 (4)
N4—C15—C16111.8 (4)C10—N2—C11111.0 (4)
N3—C15—C16110.9 (4)C10—N2—C8119.6 (4)
N4—C15—C11102.3 (4)C11—N2—C8122.1 (4)
N3—C15—C11103.2 (4)C9—N3—C15111.7 (4)
C16—C15—C11114.2 (4)C9—N3—C20120.9 (4)
O6—C16—O5126.0 (5)C15—N3—C20120.8 (4)
O6—C16—C15125.0 (5)C10—N4—C15113.1 (4)
O5—C16—C15109.0 (5)C10—N4—C19122.6 (4)
C18—C17—O5112.9 (7)C15—N4—C19122.8 (4)
C18—C17—H17A109.0C12—O4—C13'108.5 (8)
O5—C17—H17A109.0C12—O4—C13122.8 (8)
C18—C17—H17B109.0C13'—O4—C1334.4 (8)
O5—C17—H17B109.0C16—O5—C17117.9 (5)
C6—C1—C2—C32.1 (7)C22—C21—C26—Br4176.0 (4)
C8—C1—C2—C3178.9 (5)C20—C21—C26—Br42.7 (7)
C6—C1—C2—Br1178.5 (3)O1—C9—N1—C11175.0 (5)
C8—C1—C2—Br11.7 (6)N3—C9—N1—C117.5 (5)
C1—C2—C3—C43.0 (8)O1—C9—N1—C710.2 (8)
Br1—C2—C3—C4177.6 (4)N3—C9—N1—C7172.3 (4)
C2—C3—C4—C52.1 (9)N2—C11—N1—C9111.4 (4)
C3—C4—C5—C60.3 (8)C12—C11—N1—C9123.3 (5)
C3—C4—C5—Br2176.6 (4)C15—C11—N1—C90.0 (5)
C4—C5—C6—C10.6 (7)N2—C11—N1—C753.6 (6)
Br2—C5—C6—C1175.5 (3)C12—C11—N1—C771.8 (6)
C4—C5—C6—C7178.7 (5)C15—C11—N1—C7165.0 (4)
Br2—C5—C6—C72.6 (7)C6—C7—N1—C986.1 (6)
C2—C1—C6—C50.3 (7)C6—C7—N1—C1177.4 (6)
C8—C1—C6—C5177.2 (4)O2—C10—N2—C11166.6 (5)
C2—C1—C6—C7177.9 (4)N4—C10—N2—C1114.4 (5)
C8—C1—C6—C70.9 (7)O2—C10—N2—C815.8 (7)
C5—C6—C7—N1120.7 (5)N4—C10—N2—C8165.2 (4)
C1—C6—C7—N161.2 (6)N1—C11—N2—C1097.3 (5)
C2—C1—C8—N2120.9 (5)C12—C11—N2—C10138.3 (5)
C6—C1—C8—N262.2 (6)C15—C11—N2—C1013.6 (5)
N1—C11—C12—O3122.6 (7)N1—C11—N2—C852.7 (6)
N2—C11—C12—O34.5 (9)C12—C11—N2—C871.8 (6)
C15—C11—C12—O3122.1 (7)C15—C11—N2—C8163.5 (4)
N1—C11—C12—O456.7 (6)C1—C8—N2—C1071.0 (6)
N2—C11—C12—O4176.1 (5)C1—C8—N2—C1176.5 (6)
C15—C11—C12—O458.6 (7)O1—C9—N3—C15169.9 (5)
N1—C11—C15—N4111.6 (4)N1—C9—N3—C1512.6 (5)
N2—C11—C15—N47.6 (5)O1—C9—N3—C2018.3 (7)
C12—C11—C15—N4129.3 (5)N1—C9—N3—C20164.2 (4)
N1—C11—C15—N37.0 (4)N4—C15—N3—C998.0 (5)
N2—C11—C15—N3126.3 (4)C16—C15—N3—C9134.8 (4)
C12—C11—C15—N3112.1 (5)C11—C15—N3—C912.1 (5)
N1—C11—C15—C16127.5 (5)N4—C15—N3—C2053.5 (6)
N2—C11—C15—C16113.3 (5)C16—C15—N3—C2073.6 (5)
C12—C11—C15—C168.3 (7)C11—C15—N3—C20163.7 (4)
N4—C15—C16—O6129.1 (6)C21—C20—N3—C973.2 (6)
N3—C15—C16—O60.7 (8)C21—C20—N3—C1575.8 (6)
C11—C15—C16—O6115.4 (6)O2—C10—N4—C15172.1 (5)
N4—C15—C16—O550.9 (6)N2—C10—N4—C159.0 (5)
N3—C15—C16—O5179.3 (4)O2—C10—N4—C195.5 (8)
C11—C15—C16—O564.7 (6)N2—C10—N4—C19175.5 (4)
N3—C20—C21—C26118.9 (5)N3—C15—N4—C10110.2 (5)
N3—C20—C21—C2262.5 (6)C16—C15—N4—C10123.1 (5)
C26—C21—C22—C231.8 (7)C11—C15—N4—C100.5 (5)
C20—C21—C22—C23176.9 (5)N3—C15—N4—C1956.3 (6)
C26—C21—C22—C19178.8 (4)C16—C15—N4—C1970.4 (6)
C20—C21—C22—C192.6 (7)C11—C15—N4—C19167.0 (4)
N4—C19—C22—C23122.6 (5)C22—C19—N4—C1087.6 (6)
N4—C19—C22—C2158.0 (6)C22—C19—N4—C1577.6 (6)
C21—C22—C23—C243.9 (8)O3—C12—O4—C13'17.0 (15)
C19—C22—C23—C24176.7 (5)C11—C12—O4—C13'163.7 (12)
C21—C22—C23—Br3175.9 (4)O3—C12—O4—C1318.0 (13)
C19—C22—C23—Br33.5 (7)C11—C12—O4—C13161.4 (8)
C22—C23—C24—C252.9 (9)C14'—C13'—O4—C12171.1 (16)
Br3—C23—C24—C25176.9 (4)C14'—C13'—O4—C1349.6 (18)
C23—C24—C25—C260.2 (9)C14—C13—O4—C12116.9 (15)
C24—C25—C26—C212.4 (9)C14—C13—O4—C13'43 (2)
C24—C25—C26—Br4175.1 (4)O6—C16—O5—C176.4 (10)
C22—C21—C26—C251.4 (8)C15—C16—O5—C17173.6 (6)
C20—C21—C26—C25180.0 (5)C18—C17—O5—C16102.1 (9)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2ii0.932.363.278 (7)172
C19—H19A···O3iii0.972.273.227 (7)169
C25—H25···O2iv0.932.563.309 (7)138
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC26H22Br4N4O6
Mr806.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)12.3545 (16), 16.256 (2), 13.8793 (18)
β (°) 93.396 (2)
V3)2782.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)5.83
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18842, 6319, 3100
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.136, 1.00
No. of reflections6319
No. of parameters371
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.45

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected interatomic distances (Å) top
Br4···O6i3.349 (6)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2ii0.932.363.278 (7)171.5
C19—H19A···O3iii0.972.273.227 (7)169.4
C25—H25···O2iv0.932.563.309 (7)138.1
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+2.
 

Acknowledgements

The authors are grateful to Xianggao Meng for the data collection.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., She, N., Meng, G., Yin, G., Wu, A. & Isaacs, L. (2007). Org. Lett. 9, 1899–1912.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Chem. Commun. pp. 2228–2229.  Google Scholar
First citationLee, J. W., Samal, S., Selvapalam, N. & Kim, K. (2003). Acc. Chem. Res. 36, 621–630.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995–1006.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, A., Chakraborty, A., Witl, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem. 67, 5817–5830.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds