metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­di­bromidobis[3-di­methyl­amino-1-(4-pyridyl-κN)prop-2-en-1-one]cadmium(II)

aDepartment of Chemistry and Chemical Engineering, Hefei Teachers College, Hefei 230061, People's Republic of China, bInstitute of Molecular Engineering & Applied Chemistry, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, People's Republic of China
*Correspondence e-mail: dapdong@163.com

(Received 20 February 2009; accepted 25 February 2009; online 6 March 2009)

In the title compound, [CdBr2(C10H12N2O)2(H2O)2], the CdII ion is located on an inversion center and is six-coordinated by two N atoms [Cd—N = 2.377 (3) Å] from two different 3-dimethyl­amino-1-(4-pyrid­yl)prop-2-en-1-one ligands, two O atoms [Cd—O = 2.355 (2) Å] from two coordinated water mol­ecules and two bromide anions [Cd—Br = 2.6855 (5) Å]. Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane.

Related literature

For general backgroud, see: Bi et al. (2008[Bi, J. H., Kong, L. T., Huang, Z. X. & Liu, J. H. (2008). Inorg. Chem. 47, 4564-4569.]); Dong et al. (2008[Dong, H. Z., Yang, J., Liu, X. & Gou, S. H. (2008). Inorg. Chem. 47, 2913-2915.]). For related structures, see: Hu et al. (2003[Hu, C. H., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519-529.]); Ito et al. (1984[Ito, M., Shibata, T. & Saito, Y. (1984). Acta Cryst. C40, 2041-2043.]). For details of the synthesis, see Sun et al. (2008[Sun, Y.-Y., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, o901.]).

[Scheme 1]

Experimental

Crystal data
  • [CdBr2(C10H12N2O)2(H2O)2]

  • Mr = 660.68

  • Monoclinic, C 2/c

  • a = 21.362 (3) Å

  • b = 8.4360 (9) Å

  • c = 14.6371 (16) Å

  • β = 114.456 (3)°

  • V = 2401.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.27 mm−1

  • T = 273 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.407, Tmax = 0.424

  • 6227 measured reflections

  • 2356 independent reflections

  • 2085 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.02

  • 2356 reflections

  • 144 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.85 2.02 2.770 (3) 147
O2—H2B⋯O1ii 0.85 2.31 2.751 (4) 113
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-1, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, researchers showed considerable interest in the physical and chemical properties of mono- and polynuclear complexes of transition metals having the d10 electronic configuration (Bi et al., 2008; Dong et al., 2008). Ligands with pyridyl group have been used to generate various metal-organic architectures with cadmium salts (Hu et al., 2003; Ito et al., 1984). Here we report a new monomeric cadmium(II) complex, viz. the title compound, [Cd(C10H12N2O)2Br2(H2O)2].

The asymmetric unit of the title compound contains a half of centrosymmetric molecule, and the CdII ion lies on an inversion center. Each CdII ion exhibits an octahedral environment with two nitrogen atoms from the pyridyl groups of two ligands, two oxygen atoms from two coordinated water molecules, and two bromine anions (Fig. 1). Intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to bc plane.

Related literature top

For general backgroud, see: Bi et al. (2008); Dong et al. (2008). For related structures, see: Hu et al. (2003); Ito et al. (1984). For details of the synthesis, see Sun et al. (2008).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. Ligand was prepared by similar procedure reported in the literature (Sun et al., 2008). For the synthesis of title compoud, a solution of ligand (0.1 mmol), CdBr2 (0.1 mmol) in 30 ml me thanol was refluxed for 2 h, and then cooled to room temperature and filtered. Single crystals suitable for X-ray analysis were grown from the methanol solution by slow evaporation at room temperature in air. Anal. Calcd. for C20H28CdN4O4Br2: C, 36.36; H, 4.27; N, 8.48. Found: C, 36.38; H, 4.38; N, 8.32. Main FT—IR (KBr, cm-1): 3078(w), 1627(s), 1603(m), 1558(w),1498(s), 1437(m), 1384(m), 1329(w),1233(m),781(w).

Refinement top

All hydrogen atoms were geometrically positioned (C—H 0.93–0.97 Å, O–H 0.85 Å) and refined as riding, with Uiso(H)=1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering [symmetry code: (A) 1 - x,1 - y,1 - z].
Diaquadibromidobis[3-dimethylamino-1-(4-pyridyl-κN)prop-2-en-1- one]cadmium(II) top
Crystal data top
[CdBr2(C10H12N2O)2(H2O)2]F(000) = 1304
Mr = 660.68Dx = 1.828 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3328 reflections
a = 21.362 (3) Åθ = 2.6–27.8°
b = 8.4360 (9) ŵ = 4.27 mm1
c = 14.6371 (16) ÅT = 273 K
β = 114.456 (3)°Block, colourless
V = 2401.1 (5) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2356 independent reflections
Radiation source: fine-focus sealed tube2085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2625
Tmin = 0.407, Tmax = 0.424k = 810
6227 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0479P)2]
where P = (Fo2 + 2Fc2)/3
2356 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
[CdBr2(C10H12N2O)2(H2O)2]V = 2401.1 (5) Å3
Mr = 660.68Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.362 (3) ŵ = 4.27 mm1
b = 8.4360 (9) ÅT = 273 K
c = 14.6371 (16) Å0.2 × 0.2 × 0.2 mm
β = 114.456 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2356 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2085 reflections with I > 2σ(I)
Tmin = 0.407, Tmax = 0.424Rint = 0.073
6227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.02Δρmax = 0.62 e Å3
2356 reflectionsΔρmin = 0.93 e Å3
144 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.02740 (13)
Br10.626658 (19)0.61470 (5)0.54529 (3)0.04254 (15)
C10.44435 (18)0.8564 (4)0.4098 (2)0.0332 (8)
H10.45610.87600.47750.040*
C20.43309 (18)0.6830 (4)0.2848 (2)0.0350 (8)
H20.43680.58070.26390.042*
C30.42099 (19)0.9802 (4)0.3443 (2)0.0317 (8)
H30.41711.08100.36730.038*
C40.40298 (16)0.9534 (4)0.2423 (2)0.0270 (7)
C50.40919 (18)0.7997 (4)0.2139 (2)0.0341 (8)
H50.39710.77580.14670.041*
C60.33391 (18)1.0483 (5)0.0698 (2)0.0337 (8)
H60.31490.94720.05580.040*
C70.38011 (16)1.0865 (4)0.1687 (2)0.0276 (7)
C80.2340 (2)0.9862 (5)0.1300 (3)0.0524 (11)
H8A0.26460.90160.12810.079*
H8B0.19900.99690.19700.079*
H8C0.21310.96310.08480.079*
C90.2647 (2)1.2464 (5)0.1787 (3)0.0423 (9)
H9A0.28561.34520.14920.063*
H9B0.21671.26290.21960.063*
H9C0.28661.20580.21950.063*
C100.31637 (17)1.1583 (4)0.0065 (2)0.0299 (7)
H100.33711.25750.00930.036*
N10.45139 (14)0.7084 (3)0.38242 (19)0.0311 (6)
N20.27261 (15)1.1335 (4)0.1000 (2)0.0338 (7)
O10.40227 (12)1.2232 (3)0.19871 (16)0.0343 (5)
O20.50607 (12)0.3380 (3)0.37287 (16)0.0368 (6)
H2A0.46610.33440.32530.044*
H2B0.53230.38850.35250.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0341 (2)0.0237 (2)0.02374 (19)0.00164 (13)0.01137 (15)0.00238 (13)
Br10.0377 (2)0.0426 (3)0.0455 (2)0.00547 (16)0.01541 (19)0.00457 (17)
C10.043 (2)0.031 (2)0.0228 (15)0.0064 (15)0.0108 (14)0.0005 (14)
C20.043 (2)0.0280 (19)0.0297 (16)0.0049 (15)0.0112 (15)0.0012 (15)
C30.043 (2)0.0242 (19)0.0264 (16)0.0044 (14)0.0129 (15)0.0006 (13)
C40.0252 (17)0.0282 (17)0.0270 (15)0.0016 (13)0.0102 (13)0.0032 (14)
C50.042 (2)0.036 (2)0.0241 (15)0.0019 (15)0.0131 (15)0.0017 (15)
C60.037 (2)0.0299 (19)0.0284 (16)0.0003 (15)0.0076 (15)0.0022 (15)
C70.0299 (18)0.029 (2)0.0260 (16)0.0017 (14)0.0132 (14)0.0028 (14)
C80.058 (3)0.049 (3)0.037 (2)0.0098 (19)0.006 (2)0.0102 (18)
C90.044 (2)0.051 (2)0.0299 (17)0.0098 (18)0.0135 (16)0.0129 (17)
C100.0322 (18)0.0291 (18)0.0275 (15)0.0002 (14)0.0115 (14)0.0019 (14)
N10.0342 (16)0.0294 (17)0.0295 (14)0.0007 (12)0.0129 (12)0.0049 (12)
N20.0338 (16)0.0398 (18)0.0251 (13)0.0008 (12)0.0094 (12)0.0021 (13)
O10.0407 (14)0.0288 (14)0.0293 (11)0.0061 (10)0.0105 (11)0.0017 (10)
O20.0361 (13)0.0434 (15)0.0304 (12)0.0041 (11)0.0132 (10)0.0094 (11)
Geometric parameters (Å, º) top
Cd1—O2i2.355 (2)C6—C101.379 (5)
Cd1—O22.355 (2)C6—C71.411 (4)
Cd1—N1i2.377 (3)C6—H60.9300
Cd1—N12.377 (3)C7—O11.255 (4)
Cd1—Br1i2.6855 (5)C8—N21.455 (5)
Cd1—Br12.6855 (5)C8—H8A0.9600
C1—N11.339 (4)C8—H8B0.9600
C1—C31.365 (5)C8—H8C0.9600
C1—H10.9300C9—N21.449 (4)
C2—N11.333 (4)C9—H9A0.9600
C2—C51.366 (5)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
C3—C41.398 (4)C10—N21.316 (4)
C3—H30.9300C10—H100.9300
C4—C51.385 (5)O2—H2A0.8500
C4—C71.491 (4)O2—H2B0.8501
C5—H50.9300
O2i—Cd1—O2180.0C10—C6—C7121.2 (3)
O2i—Cd1—N1i90.43 (9)C10—C6—H6119.4
O2—Cd1—N1i89.57 (9)C7—C6—H6119.4
O2i—Cd1—N189.57 (9)O1—C7—C6124.8 (3)
O2—Cd1—N190.43 (9)O1—C7—C4118.4 (3)
N1i—Cd1—N1180.00 (11)C6—C7—C4116.8 (3)
O2i—Cd1—Br1i91.41 (6)N2—C8—H8A109.5
O2—Cd1—Br1i88.59 (6)N2—C8—H8B109.5
N1i—Cd1—Br1i90.33 (7)H8A—C8—H8B109.5
N1—Cd1—Br1i89.67 (7)N2—C8—H8C109.5
O2i—Cd1—Br188.59 (6)H8A—C8—H8C109.5
O2—Cd1—Br191.41 (6)H8B—C8—H8C109.5
N1i—Cd1—Br189.67 (7)N2—C9—H9A109.5
N1—Cd1—Br190.33 (7)N2—C9—H9B109.5
Br1i—Cd1—Br1180.000 (15)H9A—C9—H9B109.5
N1—C1—C3123.8 (3)N2—C9—H9C109.5
N1—C1—H1118.1H9A—C9—H9C109.5
C3—C1—H1118.1H9B—C9—H9C109.5
N1—C2—C5123.3 (3)N2—C10—C6125.0 (3)
N1—C2—H2118.3N2—C10—H10117.5
C5—C2—H2118.3C6—C10—H10117.5
C1—C3—C4119.1 (3)C2—N1—C1116.8 (3)
C1—C3—H3120.5C2—N1—Cd1120.2 (2)
C4—C3—H3120.5C1—N1—Cd1122.8 (2)
C5—C4—C3117.0 (3)C10—N2—C9121.4 (3)
C5—C4—C7122.1 (3)C10—N2—C8121.3 (3)
C3—C4—C7120.9 (3)C9—N2—C8117.2 (3)
C2—C5—C4119.9 (3)Cd1—O2—H2A107.7
C2—C5—H5120.0Cd1—O2—H2B104.3
C4—C5—H5120.0H2A—O2—H2B108.3
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1ii0.852.022.770 (3)147
O2—H2B···O1iii0.852.312.751 (4)113
Symmetry codes: (ii) x, y1, z; (iii) x+1, y1, z+1/2.

Experimental details

Crystal data
Chemical formula[CdBr2(C10H12N2O)2(H2O)2]
Mr660.68
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)21.362 (3), 8.4360 (9), 14.6371 (16)
β (°) 114.456 (3)
V3)2401.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.27
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.407, 0.424
No. of measured, independent and
observed [I > 2σ(I)] reflections
6227, 2356, 2085
Rint0.073
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.02
No. of reflections2356
No. of parameters144
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.93

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.852.022.770 (3)147.0
O2—H2B···O1ii0.852.312.751 (4)113.0
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z+1/2.
 

Acknowledgements

The authors are indebted to Anhui Provincial Natural Science Research Project (KJ2009B240Z) and the National Natural Science Foundation of China (No.20871039) for financial support.

References

First citationBi, J. H., Kong, L. T., Huang, Z. X. & Liu, J. H. (2008). Inorg. Chem. 47, 4564–4569.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, H. Z., Yang, J., Liu, X. & Gou, S. H. (2008). Inorg. Chem. 47, 2913–2915.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, C. H., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519–529.  Web of Science CSD CrossRef CAS Google Scholar
First citationIto, M., Shibata, T. & Saito, Y. (1984). Acta Cryst. C40, 2041–2043.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Y., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, o901.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds