organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(6-Eth­oxy­benzo­thia­zol-2-yl)imino­meth­yl]-6-meth­oxy­phenol

aDongchang College, Liaocheng University, 250059 Liaocheng, Shandong, People's Republic of China
*Correspondence e-mail: imlijikun@163.com

(Received 25 February 2009; accepted 13 March 2009; online 25 March 2009)

In the title mol­ecule, C17H16N2O3S, the benzothia­zole fragment and the benzene ring form a dihedral angle of 13.8 (4)°, and an intramolecular O—H⋯N hydrogen bond occurs. In the crystal structure, pairs of weak inter­molecular O—H⋯S and C—H⋯(O,O) hydrogen bonds link mol­ecules into centrosymmetric dimers. These dimers are related by translation along the a axis and form stacks via ππ inter­actions, with a short inter­molecular distance of 3.766 (5) Å between the centroids of the benzene and thia­zole rings.

Related literature

For a related crystal structure, see: Zhao et al. (2008[Zhao, R.-G., Lu, J. & Li, J.-K. (2008). Acta Cryst. E64, o499.]). For details of the crystallography and coordination chemistry of Schiff base compounds, see: Garnovski et al. (1993[Garnovski, A. D., Nivorozhkin, A. L. & Minki, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N2O3S

  • Mr = 328.38

  • Triclinic, [P \overline 1]

  • a = 6.0178 (14) Å

  • b = 10.941 (3) Å

  • c = 12.164 (3) Å

  • α = 85.479 (4)°

  • β = 83.693 (5)°

  • γ = 76.486 (3)°

  • V = 772.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.12 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.987

  • 4102 measured reflections

  • 2720 independent reflections

  • 1911 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 1.03

  • 2720 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.606 (3) 147
O1—H1⋯S1i 0.82 2.92 3.1746 (18) 100
C12—H12⋯O1i 0.93 2.59 3.328 (3) 136
C12—H12⋯O2i 0.93 2.60 3.491 (3) 160
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, a number of Schiff base compounds have been investigated in terms of their crystallography and coordination chemistry (Garnovski et al., 1993). In order to continue our studies on Schiff bases, we now report the synthesis and crystal structure of the title compound, (I).

In (I) (Fig. 1), all the geometric parameters are in a good agreement with those found in (E)-2-methoxy-6-[(5-methylisoxazol-3-yl)-iminomethyl] phenol (Zhao et al., 2008). The benzene and the benzothiazole rings make a dihedral angle of 13.8 (4)° showing that the Schiff base ligand adopts a non-planar conformation in the case. Moreover, weak intermolecular O—H···S and C—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers. These dimers related by translation along axis a form stacks via ππ interactions proved by short intermolecular distance of 3.766 (5) Å between the centroids of benzene and thiazole rings.

Related literature top

For a related crystal structure, see: Zhao et al. (2008). For details of the crystallography and coordination chemistry of Schiff base compounds, see: Garnovski et al. (1993).

Experimental top

The title compound was synthesized by the reaction of 2-hydroxy-3-methoxybenzaldehyde (0.152 g, 1 mmol) and 6-ethoxybenzothiazol-2-amine (0.194 g, 1 mmol) in ethanol solution and stirred under reflux conditions (353 K) for 5 h. When cooled to room temperature the solution was filtered and after a week yellow crystals suitable for X-ray diffraction study were obtained. Yield, 0.283 g, 86%. m.p. 342–344 K.

Refinement top

The H atoms were included in the riding-model approximation with C—H = 0.93 Å, C—H = 0.96 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C-aromatic) and Uiso(H) = 1.5Ueq(C-methyl, methylene and O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme.
(E)-2-[(6-Ethoxybenzothiazol-2-yl)iminomethyl]-6-methoxyphenol top
Crystal data top
C17H16N2O3SZ = 2
Mr = 328.38F(000) = 344
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0178 (14) ÅCell parameters from 982 reflections
b = 10.941 (3) Åθ = 2.6–22.3°
c = 12.164 (3) ŵ = 0.23 mm1
α = 85.479 (4)°T = 298 K
β = 83.693 (5)°Block, yellow
γ = 76.486 (3)°0.12 × 0.08 × 0.06 mm
V = 772.9 (3) Å3
Data collection top
Bruker SMART APEX
diffractometer
2720 independent reflections
Radiation source: fine-focus sealed tube1911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.973, Tmax = 0.987k = 1212
4102 measured reflectionsl = 149
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.0301P]
where P = (Fo2 + 2Fc2)/3
2720 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H16N2O3Sγ = 76.486 (3)°
Mr = 328.38V = 772.9 (3) Å3
Triclinic, P1Z = 2
a = 6.0178 (14) ÅMo Kα radiation
b = 10.941 (3) ŵ = 0.23 mm1
c = 12.164 (3) ÅT = 298 K
α = 85.479 (4)°0.12 × 0.08 × 0.06 mm
β = 83.693 (5)°
Data collection top
Bruker SMART APEX
diffractometer
2720 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1911 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.987Rint = 0.020
4102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
2720 reflectionsΔρmin = 0.21 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46082 (11)0.40652 (6)0.37670 (5)0.0489 (2)
O10.8898 (3)0.68081 (19)0.43648 (14)0.0622 (5)
H10.81200.63630.41570.093*
O21.1451 (3)0.83142 (17)0.47463 (15)0.0609 (5)
O30.0448 (3)0.15300 (16)0.22235 (13)0.0528 (5)
N10.7555 (3)0.54862 (17)0.29849 (16)0.0439 (5)
N20.5822 (3)0.45416 (18)0.16878 (16)0.0447 (5)
C11.0271 (4)0.7137 (2)0.3503 (2)0.0437 (6)
C21.0358 (4)0.6701 (2)0.2444 (2)0.0413 (6)
C31.1832 (4)0.7085 (2)0.1588 (2)0.0498 (7)
H31.19150.67870.08860.060*
C41.3155 (4)0.7898 (2)0.1772 (2)0.0539 (7)
H41.41110.81610.11940.065*
C51.3068 (4)0.8329 (2)0.2824 (2)0.0518 (7)
H51.39780.88770.29450.062*
C61.1657 (4)0.7957 (2)0.3686 (2)0.0458 (6)
C71.2911 (5)0.9082 (3)0.5008 (2)0.0687 (9)
H7A1.44840.86680.48220.103*
H7B1.26680.92210.57860.103*
H7C1.25660.98760.45930.103*
C80.8943 (4)0.5867 (2)0.2223 (2)0.0436 (6)
H80.90360.55960.15110.052*
C90.6154 (4)0.4739 (2)0.2685 (2)0.0413 (6)
C100.4252 (4)0.3792 (2)0.17276 (19)0.0406 (6)
C110.3392 (4)0.3421 (2)0.27927 (19)0.0397 (6)
C120.1811 (4)0.2670 (2)0.2947 (2)0.0418 (6)
H120.12460.24350.36550.050*
C130.1098 (4)0.2280 (2)0.2018 (2)0.0423 (6)
C140.1905 (4)0.2659 (2)0.0958 (2)0.0473 (6)
H140.13940.23940.03430.057*
C150.3456 (4)0.3422 (2)0.0812 (2)0.0477 (6)
H150.39630.36860.01030.057*
C160.1092 (4)0.1015 (2)0.1306 (2)0.0520 (7)
H16A0.02530.05160.09050.062*
H16B0.18270.16840.08050.062*
C170.2723 (4)0.0206 (2)0.1744 (2)0.0595 (8)
H17A0.19590.04720.22160.089*
H17B0.32300.01330.11370.089*
H17C0.40230.07030.21600.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0572 (4)0.0570 (4)0.0411 (4)0.0323 (3)0.0019 (3)0.0001 (3)
O10.0725 (13)0.0819 (14)0.0470 (11)0.0529 (11)0.0118 (9)0.0104 (10)
O20.0722 (13)0.0712 (12)0.0521 (11)0.0419 (10)0.0002 (9)0.0115 (10)
O30.0598 (11)0.0620 (11)0.0476 (10)0.0381 (9)0.0015 (8)0.0062 (9)
N10.0431 (11)0.0474 (12)0.0461 (12)0.0220 (10)0.0008 (10)0.0009 (10)
N20.0443 (12)0.0506 (12)0.0429 (12)0.0211 (10)0.0007 (9)0.0006 (10)
C10.0410 (13)0.0452 (14)0.0464 (15)0.0183 (12)0.0033 (11)0.0027 (12)
C20.0393 (13)0.0419 (14)0.0443 (14)0.0154 (11)0.0021 (11)0.0033 (11)
C30.0490 (15)0.0566 (16)0.0474 (15)0.0225 (13)0.0015 (12)0.0016 (13)
C40.0519 (16)0.0616 (17)0.0519 (16)0.0289 (14)0.0097 (13)0.0014 (14)
C50.0498 (15)0.0530 (16)0.0602 (17)0.0306 (13)0.0020 (13)0.0012 (14)
C60.0473 (14)0.0462 (14)0.0473 (15)0.0183 (12)0.0024 (12)0.0025 (12)
C70.081 (2)0.0717 (19)0.0689 (19)0.0453 (17)0.0054 (16)0.0165 (16)
C80.0402 (13)0.0486 (15)0.0432 (14)0.0146 (12)0.0006 (11)0.0032 (12)
C90.0391 (13)0.0418 (14)0.0453 (15)0.0158 (11)0.0010 (11)0.0010 (12)
C100.0390 (13)0.0435 (14)0.0418 (14)0.0177 (11)0.0031 (11)0.0028 (11)
C110.0414 (13)0.0401 (13)0.0394 (13)0.0140 (11)0.0008 (11)0.0035 (11)
C120.0450 (14)0.0446 (14)0.0390 (13)0.0208 (12)0.0046 (11)0.0012 (11)
C130.0403 (13)0.0423 (14)0.0475 (15)0.0181 (11)0.0011 (11)0.0024 (12)
C140.0487 (15)0.0580 (16)0.0409 (14)0.0245 (13)0.0004 (11)0.0070 (12)
C150.0490 (15)0.0600 (16)0.0381 (14)0.0248 (13)0.0042 (11)0.0014 (12)
C160.0538 (16)0.0576 (16)0.0527 (16)0.0279 (13)0.0038 (13)0.0075 (13)
C170.0587 (17)0.0564 (17)0.0731 (19)0.0333 (14)0.0030 (15)0.0058 (15)
Geometric parameters (Å, º) top
S1—C111.732 (2)C5—H50.9300
S1—C91.743 (2)C7—H7A0.9600
O1—C11.342 (3)C7—H7B0.9600
O1—H10.8200C7—H7C0.9600
O2—C61.361 (3)C8—H80.9300
O2—C71.425 (3)C10—C151.383 (3)
O3—C131.370 (3)C10—C111.407 (3)
O3—C161.417 (3)C11—C121.385 (3)
N1—C81.289 (3)C12—C131.382 (3)
N1—C91.396 (3)C12—H120.9300
N2—C91.293 (3)C13—C141.394 (3)
N2—C101.383 (3)C14—C151.380 (3)
C1—C21.399 (3)C14—H140.9300
C1—C61.405 (3)C15—H150.9300
C2—C31.397 (3)C16—C171.500 (3)
C2—C81.443 (3)C16—H16A0.9700
C3—C41.370 (3)C16—H16B0.9700
C3—H30.9300C17—H17A0.9600
C4—C51.390 (4)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C5—C61.373 (3)
C11—S1—C988.69 (11)N2—C9—N1126.4 (2)
C1—O1—H1109.5N2—C9—S1117.12 (17)
C6—O2—C7117.7 (2)N1—C9—S1116.38 (18)
C13—O3—C16117.82 (18)C15—C10—N2124.9 (2)
C8—N1—C9118.2 (2)C15—C10—C11119.1 (2)
C9—N2—C10109.4 (2)N2—C10—C11115.9 (2)
O1—C1—C2122.7 (2)C12—C11—C10121.7 (2)
O1—C1—C6117.7 (2)C12—C11—S1129.48 (19)
C2—C1—C6119.6 (2)C10—C11—S1108.82 (16)
C3—C2—C1119.4 (2)C13—C12—C11118.0 (2)
C3—C2—C8119.6 (2)C13—C12—H12121.0
C1—C2—C8121.1 (2)C11—C12—H12121.0
C4—C3—C2120.6 (2)O3—C13—C12115.4 (2)
C4—C3—H3119.7O3—C13—C14123.7 (2)
C2—C3—H3119.7C12—C13—C14120.9 (2)
C3—C4—C5120.0 (2)C15—C14—C13120.6 (2)
C3—C4—H4120.0C15—C14—H14119.7
C5—C4—H4120.0C13—C14—H14119.7
C6—C5—C4120.8 (2)C14—C15—C10119.6 (2)
C6—C5—H5119.6C14—C15—H15120.2
C4—C5—H5119.6C10—C15—H15120.2
O2—C6—C5125.7 (2)O3—C16—C17107.7 (2)
O2—C6—C1114.7 (2)O3—C16—H16A110.2
C5—C6—C1119.7 (2)C17—C16—H16A110.2
O2—C7—H7A109.5O3—C16—H16B110.2
O2—C7—H7B109.5C17—C16—H16B110.2
H7A—C7—H7B109.5H16A—C16—H16B108.5
O2—C7—H7C109.5C16—C17—H17A109.5
H7A—C7—H7C109.5C16—C17—H17B109.5
H7B—C7—H7C109.5H17A—C17—H17B109.5
N1—C8—C2121.9 (2)C16—C17—H17C109.5
N1—C8—H8119.0H17A—C17—H17C109.5
C2—C8—H8119.0H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.606 (3)147
O1—H1···S1i0.822.923.1746 (18)100
C12—H12···O1i0.932.593.328 (3)136
C12—H12···O2i0.932.603.491 (3)160
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H16N2O3S
Mr328.38
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.0178 (14), 10.941 (3), 12.164 (3)
α, β, γ (°)85.479 (4), 83.693 (5), 76.486 (3)
V3)772.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4102, 2720, 1911
Rint0.020
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.03
No. of reflections2720
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.606 (3)147
O1—H1···S1i0.822.923.1746 (18)100.2
C12—H12···O1i0.932.593.328 (3)136.1
C12—H12···O2i0.932.603.491 (3)160.4
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The author is grateful for financial support from the Natural Science Foundation of Dongchang College of Liaocheng University (grant No. LG0801).

References

First citationGarnovski, A. D., Nivorozhkin, A. L. & Minki, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhao, R.-G., Lu, J. & Li, J.-K. (2008). Acta Cryst. E64, o499.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds