metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[bis­­(1-oxo-2-pyrid­yl)­aminato]­copper(II) tetra­hydrate

aCollege of Chemistry and Life Science, Lishui University, 323000 Lishui, Zhejiang, People's Republic of China
*Correspondence e-mail: zjlswgl@126.com

(Received 5 March 2009; accepted 14 March 2009; online 19 March 2009)

In the title compound, [Cu(C10H8N3O2)2]·4H2O, the CuII ion has a distorted octa­hedral coordination formed by four O [Cu—O = 2.051 (3)–2.083 (4) Å] and two N [Cu—N = 1.985 (4) and 1.996 (4) Å] atoms from two tridentate bis­(1-oxo-2-pyrid­yl)aminate ligands. In the two ligands, the pyridyl rings form dihedral angles of 21.0 (1) and 15.5 (1)°. The crystal packing exhibits an extensive network of O—H⋯O hydrogen bonds and ππ inter­actions proved by short distances of 3.650 (1) and 3.732 (2) Å between the centroids of pyridyl rings of neighbouring mol­ecules.

Related literature

For general background, see Patra et al. (2004[Patra, A. K., Rose, M. J., Murphy, K. A., Olmstead, M. M. & Mascharak, P. K. (2004). Inorg. Chem. 43, 4487-4495.]). For the crystal structures of related compounds, see: Kuang et al. (2006[Kuang, H.-M., Zeng, X.-R., Liu, Y.-Q., Luo, Q.-Y. & Fang, X.-N. (2006). Acta Cryst. E62, m1132-m1133.]); Liu et al. (2007[Liu, Y. Q., Zeng, X. R., Liu, J. Q., Li, D. F. & Wen, H. R. (2007). Chin. J. Struct. Chem. 26, 683-686.], 2008[Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327-2334.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H8N3O2)2]·4H2O

  • Mr = 539.99

  • Monoclinic, P 21 /c

  • a = 10.697 (3) Å

  • b = 17.607 (5) Å

  • c = 15.052 (3) Å

  • β = 127.136 (14)°

  • V = 2260.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 298 K

  • 0.29 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.755, Tmax = 0.837

  • 11476 measured reflections

  • 4095 independent reflections

  • 1752 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.159

  • S = 0.85

  • 4095 reflections

  • 340 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WA⋯O3Wiii 0.85 (7) 2.01 (7) 2.800 (7) 156 (6)
O3W—H3WA⋯O4 0.85 (3) 1.99 (5) 2.808 (6) 163 (7)
O2W—H2WB⋯O3 0.84 (6) 2.01 (6) 2.848 (6) 172 (8)
O1W—H1WA⋯O1iv 0.852 (10) 2.27 (4) 3.025 (6) 148 (7)
O1W—H1WB⋯O2Wii 0.86 (7) 1.96 (8) 2.755 (7) 153 (6)
O4W—H4WB⋯O4v 0.84 (3) 2.17 (3) 2.951 (6) 154 (6)
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x+1, y, z; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Bis(amidopyridine) ligands have been widely explored in coordination chemistry for building various novel structural architectures and functional solid materials. Besides their diverse coordination modes, amide groups of ligands have proved to be useful in self-assembly, since they give predictable patterns of hydrogen bonding that can add extra dimensionality and helicity to the supramolecular structures (Patra et al., 2004). The modified bis(1-oxo-2-pyridyl)aminato ligand and its complexes have been recently reported (Liu et al., 2007). In this paper, we report the synthesis and crystal structure of the title compound, (I).

The CuII atom in (I) (Fig.1) has a distorted octahedral coordination formed by two central N atoms and four O atoms of N-oxide groups from two bis(1-oxo-2-pyridyl)aminato ligands. This structure is very similar with [CuL2].CH3OH compound (Kuang et al., 2006). The average Cu—O bond length of 2.062 Å is close to the values observed in related complexes (Liu et al., 2008).

The crystal packing exhibits ππ interactions (Table 1) and an extensive network of O—H···O hydrogen bonds (Table 2).

Related literature top

For general background, see Patra et al. (2004). For the crystal structures of related compounds, see: Kuang et al. (2006); Liu et al. (2007, 2008).

Experimental top

Bis(1-oxo-2-pyridyl)aminato (0.062 g, 0.28 mmol), CuCl2 (0.024 g, 0.13 mmol), were added distilled water(12 mL), the mixture was heated for three hours under reflux. during the process stirring and influx were required. The resultant was kept at room temperature, three days later some single crystals of the size suitable for X-Ray diffraction measurement.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (benze ring) with Uiso(H) = 1.2Ueq(C or N). H atoms of the water molecules were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H = 0.85 (4) Å and H···H = 1.42 (4) Å), and treated as riding with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme and 30% probability displacement ellipsoids.
Bis[bis(1-oxo-2-pyridyl)aminato]copper(II) tetrahydrate top
Crystal data top
[Cu(C10H8N3O2)2]·4H2OF(000) = 1116
Mr = 539.99Dx = 1.587 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1752 reflections
a = 10.697 (3) Åθ = 2.1–25.3°
b = 17.607 (5) ŵ = 1.03 mm1
c = 15.052 (3) ÅT = 298 K
β = 127.136 (14)°Block, blue
V = 2260.0 (10) Å30.29 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
4095 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 25.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1012
Tmin = 0.755, Tmax = 0.837k = 2116
11476 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.08P)2 + 0.2094P]
where P = (Fo2 + 2Fc2)/3
4095 reflections(Δ/σ)max < 0.001
340 parametersΔρmax = 0.60 e Å3
12 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu(C10H8N3O2)2]·4H2OV = 2260.0 (10) Å3
Mr = 539.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.697 (3) ŵ = 1.03 mm1
b = 17.607 (5) ÅT = 298 K
c = 15.052 (3) Å0.29 × 0.22 × 0.18 mm
β = 127.136 (14)°
Data collection top
Bruker APEXII area-detector
diffractometer
4095 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1752 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.837Rint = 0.076
11476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05412 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.60 e Å3
4095 reflectionsΔρmin = 0.46 e Å3
340 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.41065 (8)0.62055 (4)0.65999 (6)0.0480 (3)
O40.5914 (4)0.6883 (2)0.6952 (3)0.0476 (10)
O30.2092 (4)0.5560 (2)0.5640 (3)0.0466 (10)
O20.5541 (4)0.5283 (2)0.7419 (3)0.0511 (10)
O10.2746 (4)0.7147 (2)0.6342 (3)0.0506 (10)
N50.3971 (5)0.6065 (2)0.5228 (3)0.0366 (11)
N60.6029 (5)0.6880 (2)0.6100 (4)0.0407 (11)
N40.1976 (4)0.5258 (2)0.4770 (3)0.0355 (10)
N20.4349 (5)0.6242 (3)0.8015 (3)0.0395 (11)
C180.6318 (6)0.6939 (4)0.4418 (5)0.0567 (17)
H180.64090.69570.38410.068*
N30.6122 (5)0.5311 (3)0.8499 (4)0.0471 (12)
N10.2569 (5)0.7195 (3)0.7140 (4)0.0481 (13)
C150.2965 (5)0.5512 (3)0.4521 (4)0.0369 (13)
C160.5016 (6)0.6442 (3)0.5173 (4)0.0366 (14)
C140.2811 (6)0.5125 (3)0.3655 (4)0.0423 (14)
H140.34880.52460.34830.051*
C60.5502 (6)0.5803 (3)0.8852 (5)0.0435 (14)
C200.7135 (6)0.7326 (3)0.6203 (5)0.0463 (15)
H200.77880.76160.68440.056*
C50.3413 (6)0.6719 (3)0.8065 (5)0.0457 (15)
C110.0881 (6)0.4723 (3)0.4162 (5)0.0448 (14)
H110.02140.45870.43380.054*
C120.0727 (6)0.4377 (3)0.3297 (5)0.0499 (15)
H120.00390.40100.28770.060*
C170.5199 (6)0.6495 (3)0.4335 (5)0.0497 (16)
H170.45280.62160.36860.060*
C40.3090 (7)0.6789 (4)0.8835 (5)0.0543 (17)
H40.35790.64630.94430.065*
C20.1304 (7)0.7794 (4)0.7821 (6)0.065 (2)
H20.06160.81580.77450.078*
C30.2077 (7)0.7324 (4)0.8717 (6)0.0638 (19)
H30.19140.73670.92570.077*
C130.1727 (7)0.4582 (4)0.3055 (5)0.0541 (16)
H130.16560.43450.24730.065*
C190.7303 (7)0.7357 (4)0.5374 (5)0.0594 (18)
H190.80800.76590.54550.071*
C10.1547 (6)0.7728 (3)0.7021 (5)0.0592 (18)
H10.10160.80450.64010.071*
C100.7378 (7)0.4870 (4)0.9224 (6)0.0613 (18)
H100.77910.45680.89510.074*
C90.8059 (8)0.4848 (4)1.0328 (6)0.074 (2)
H90.89170.45371.08110.089*
C80.7422 (8)0.5307 (4)1.0702 (6)0.075 (2)
H80.78400.52941.14520.091*
C70.6194 (7)0.5779 (4)0.9999 (5)0.0548 (16)
H70.58070.60911.02810.066*
O1W0.9650 (6)0.6775 (3)0.4134 (4)0.0916 (16)
O2W0.2615 (5)0.4326 (3)0.7051 (4)0.0789 (14)
O3W0.4779 (6)0.8374 (3)0.6629 (5)0.0815 (14)
O4W0.8955 (6)0.8330 (4)0.4159 (4)0.0934 (16)
H2WA0.354 (4)0.415 (4)0.744 (6)0.140*
H2WB0.250 (7)0.472 (3)0.669 (6)0.140*
H3WB0.384 (4)0.847 (4)0.638 (7)0.140*
H1WA1.029 (7)0.684 (4)0.4837 (14)0.140*
H1WB0.911 (8)0.637 (3)0.398 (6)0.140*
H4WB0.7981 (17)0.832 (5)0.365 (4)0.140*
H4WA0.952 (6)0.817 (5)0.398 (6)0.140*
H3WA0.499 (8)0.7903 (12)0.676 (7)0.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0496 (4)0.0564 (5)0.0427 (5)0.0004 (4)0.0303 (4)0.0027 (4)
O40.050 (2)0.056 (3)0.039 (2)0.010 (2)0.0277 (19)0.005 (2)
O30.051 (2)0.054 (3)0.043 (2)0.0071 (19)0.034 (2)0.011 (2)
O20.061 (2)0.064 (3)0.038 (2)0.012 (2)0.035 (2)0.002 (2)
O10.056 (2)0.060 (3)0.040 (2)0.010 (2)0.032 (2)0.002 (2)
N50.034 (2)0.042 (3)0.035 (3)0.001 (2)0.022 (2)0.001 (2)
N60.039 (3)0.044 (3)0.037 (3)0.001 (2)0.022 (2)0.004 (2)
N40.032 (2)0.040 (3)0.037 (3)0.001 (2)0.022 (2)0.002 (2)
N20.044 (3)0.047 (3)0.034 (3)0.004 (2)0.027 (2)0.004 (2)
C180.046 (3)0.081 (5)0.048 (4)0.004 (4)0.031 (3)0.013 (4)
N30.053 (3)0.048 (3)0.044 (3)0.000 (3)0.031 (3)0.002 (3)
N10.037 (3)0.062 (4)0.041 (3)0.005 (3)0.022 (2)0.017 (3)
C150.032 (3)0.053 (4)0.026 (3)0.011 (3)0.018 (3)0.005 (3)
C160.029 (3)0.053 (4)0.026 (3)0.004 (3)0.016 (3)0.003 (3)
C140.040 (3)0.056 (4)0.037 (3)0.010 (3)0.026 (3)0.007 (3)
C60.052 (3)0.051 (4)0.040 (4)0.005 (3)0.035 (3)0.002 (3)
C200.038 (3)0.050 (4)0.044 (4)0.008 (3)0.021 (3)0.001 (3)
C50.043 (3)0.057 (4)0.032 (3)0.012 (3)0.020 (3)0.009 (3)
C110.041 (3)0.047 (4)0.050 (4)0.001 (3)0.029 (3)0.001 (3)
C120.048 (3)0.045 (4)0.049 (4)0.004 (3)0.025 (3)0.010 (3)
C170.043 (3)0.067 (4)0.039 (4)0.004 (3)0.024 (3)0.003 (3)
C40.054 (4)0.075 (5)0.043 (4)0.010 (4)0.034 (3)0.014 (3)
C20.045 (4)0.080 (5)0.074 (5)0.006 (4)0.037 (4)0.037 (4)
C30.054 (4)0.094 (6)0.057 (5)0.016 (4)0.041 (4)0.025 (4)
C130.056 (4)0.058 (4)0.046 (4)0.009 (4)0.030 (3)0.000 (3)
C190.044 (4)0.070 (5)0.061 (5)0.010 (3)0.030 (4)0.006 (4)
C10.039 (3)0.056 (4)0.064 (5)0.001 (3)0.021 (3)0.015 (3)
C100.054 (4)0.061 (5)0.065 (5)0.009 (4)0.033 (4)0.009 (4)
C90.072 (4)0.091 (6)0.040 (4)0.011 (4)0.023 (4)0.010 (4)
C80.082 (5)0.081 (6)0.044 (4)0.006 (5)0.028 (4)0.009 (4)
C70.064 (4)0.063 (4)0.041 (4)0.003 (4)0.034 (3)0.001 (3)
O1W0.067 (3)0.069 (4)0.098 (4)0.002 (3)0.029 (3)0.017 (3)
O2W0.087 (3)0.069 (4)0.082 (4)0.004 (3)0.052 (3)0.009 (3)
O3W0.108 (4)0.066 (3)0.083 (4)0.003 (3)0.064 (4)0.002 (3)
O4W0.102 (4)0.097 (4)0.073 (4)0.001 (4)0.048 (3)0.003 (3)
Geometric parameters (Å, º) top
Cu1—N21.985 (4)C20—H200.9300
Cu1—N51.996 (4)C5—C41.400 (7)
Cu1—O42.051 (3)C11—C121.355 (7)
Cu1—O22.056 (4)C11—H110.9300
Cu1—O32.064 (3)C12—C131.371 (7)
Cu1—O12.083 (4)C12—H120.9300
O4—N61.359 (5)C17—H170.9300
O3—N41.348 (5)C4—C31.364 (8)
O2—N31.347 (5)C4—H40.9300
O1—N11.327 (5)C2—C31.357 (9)
N5—C161.345 (6)C2—C11.382 (8)
N5—C151.363 (6)C2—H20.9300
N6—C201.350 (6)C3—H30.9300
N6—C161.374 (6)C13—H130.9300
N4—C111.342 (6)C19—H190.9300
N4—C151.393 (6)C1—H10.9300
N2—C51.343 (6)C10—C91.354 (8)
N2—C61.353 (7)C10—H100.9300
C18—C171.371 (7)C9—C81.378 (9)
C18—C191.376 (8)C9—H90.9300
C18—H180.9300C8—C71.363 (8)
N3—C101.352 (7)C8—H80.9300
N3—C61.377 (7)C7—H70.9300
N1—C11.368 (7)O1W—H1WA0.852 (10)
N1—C51.393 (7)O1W—H1WB0.86 (7)
C15—C141.390 (7)O2W—H2WA0.85 (7)
C16—C171.391 (7)O2W—H2WB0.84 (6)
C14—C131.345 (7)O3W—H3WB0.85 (8)
C14—H140.9300O3W—H3WA0.85 (3)
C6—C71.410 (7)O4W—H4WB0.85 (8)
C20—C191.366 (7)O4W—H4WA0.85 (8)
Cg1···Cg3i3.732 (2)Cg2···Cg3ii3.650 (1)
N2—Cu1—N5174.15 (18)N3—C6—C7115.7 (5)
N2—Cu1—O4102.22 (16)N6—C20—C19120.6 (5)
N5—Cu1—O478.90 (16)N6—C20—H20119.7
N2—Cu1—O279.40 (16)C19—C20—H20119.7
N5—Cu1—O294.82 (15)N2—C5—N1112.0 (5)
O4—Cu1—O293.35 (15)N2—C5—C4131.9 (6)
N2—Cu1—O3100.02 (15)N1—C5—C4116.1 (5)
N5—Cu1—O379.34 (15)N4—C11—C12121.4 (5)
O4—Cu1—O3157.50 (14)N4—C11—H11119.3
O2—Cu1—O394.08 (15)C12—C11—H11119.3
N2—Cu1—O178.36 (17)C11—C12—C13118.4 (5)
N5—Cu1—O1107.41 (15)C11—C12—H12120.8
O4—Cu1—O191.64 (15)C13—C12—H12120.8
O2—Cu1—O1157.76 (15)C18—C17—C16123.3 (5)
O3—Cu1—O189.47 (14)C18—C17—H17118.4
N6—O4—Cu1111.2 (3)C16—C17—H17118.4
N4—O3—Cu1110.0 (3)C3—C4—C5121.9 (6)
N3—O2—Cu1109.1 (3)C3—C4—H4119.1
N1—O1—Cu1110.3 (3)C5—C4—H4119.1
C16—N5—C15126.8 (4)C3—C2—C1119.5 (6)
C16—N5—Cu1117.3 (3)C3—C2—H2120.2
C15—N5—Cu1115.2 (3)C1—C2—H2120.2
C20—N6—O4117.4 (4)C2—C3—C4120.6 (6)
C20—N6—C16122.8 (5)C2—C3—H3119.7
O4—N6—C16119.8 (4)C4—C3—H3119.7
C11—N4—O3118.1 (4)C14—C13—C12120.1 (6)
C11—N4—C15122.3 (5)C14—C13—H13119.9
O3—N4—C15119.7 (4)C12—C13—H13119.9
C5—N2—C6126.6 (5)C20—C19—C18119.6 (6)
C5—N2—Cu1117.5 (4)C20—C19—H19120.2
C6—N2—Cu1115.8 (3)C18—C19—H19120.2
C17—C18—C19118.4 (6)N1—C1—C2120.0 (6)
C17—C18—H18120.8N1—C1—H1120.0
C19—C18—H18120.8C2—C1—H1120.0
O2—N3—C10117.5 (5)N3—C10—C9122.9 (6)
O2—N3—C6120.7 (5)N3—C10—H10118.6
C10—N3—C6121.7 (5)C9—C10—H10118.6
O1—N1—C1117.6 (5)C10—C9—C8117.0 (7)
O1—N1—C5120.5 (4)C10—C9—H9121.5
C1—N1—C5121.9 (5)C8—C9—H9121.5
N5—C15—C14132.4 (5)C7—C8—C9121.5 (6)
N5—C15—N4112.9 (4)C7—C8—H8119.2
C14—C15—N4114.5 (5)C9—C8—H8119.2
N5—C16—N6112.9 (4)C8—C7—C6121.1 (6)
N5—C16—C17131.8 (5)C8—C7—H7119.5
N6—C16—C17115.3 (5)C6—C7—H7119.5
C13—C14—C15123.1 (5)H1WA—O1W—H1WB111 (7)
C13—C14—H14118.5H2WA—O2W—H2WB114 (8)
C15—C14—H14118.5H3WB—O3W—H3WA112 (8)
N2—C6—N3112.4 (5)H4WB—O4W—H4WA115 (3)
N2—C6—C7131.8 (5)
Symmetry codes: (i) x, y1/2, z3/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O3Wiii0.85 (7)2.01 (7)2.800 (7)156 (6)
O3W—H3WA···O40.85 (3)1.99 (5)2.808 (6)163 (7)
O2W—H2WB···O30.84 (6)2.01 (6)2.848 (6)172 (8)
O1W—H1WA···O1iv0.85 (1)2.27 (4)3.025 (6)148 (7)
O1W—H1WB···O2Wii0.86 (7)1.96 (8)2.755 (7)153 (6)
O4W—H4WB···O4v0.84 (3)2.17 (3)2.951 (6)154 (6)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+1, y, z; (v) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H8N3O2)2]·4H2O
Mr539.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.697 (3), 17.607 (5), 15.052 (3)
β (°) 127.136 (14)
V3)2260.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.29 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.755, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
11476, 4095, 1752
Rint0.076
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.159, 0.85
No. of reflections4095
No. of parameters340
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.46

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Selected interatomic distances (Å) top
Cg1···Cg3i3.732 (2)Cg2···Cg3ii3.650 (1)
Symmetry codes: (i) x, y1/2, z3/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O3Wiii0.85 (7)2.01 (7)2.800 (7)156 (6)
O3W—H3WA···O40.85 (3)1.99 (5)2.808 (6)163 (7)
O2W—H2WB···O30.84 (6)2.01 (6)2.848 (6)172 (8)
O1W—H1WA···O1iv0.852 (10)2.27 (4)3.025 (6)148 (7)
O1W—H1WB···O2Wii0.86 (7)1.96 (8)2.755 (7)153 (6)
O4W—H4WB···O4v0.84 (3)2.17 (3)2.951 (6)154 (6)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+1, y, z; (v) x, y+3/2, z1/2.
 

Acknowledgements

The author is grateful to the Research Foundation of Lishui University (grant No. KZ08005) for financial support.

References

First citationBruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKuang, H.-M., Zeng, X.-R., Liu, Y.-Q., Luo, Q.-Y. & Fang, X.-N. (2006). Acta Cryst. E62, m1132–m1133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327–2334.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y. Q., Zeng, X. R., Liu, J. Q., Li, D. F. & Wen, H. R. (2007). Chin. J. Struct. Chem. 26, 683–686.  CAS Google Scholar
First citationPatra, A. K., Rose, M. J., Murphy, K. A., Olmstead, M. M. & Mascharak, P. K. (2004). Inorg. Chem. 43, 4487–4495.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds