organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl­butyl 2-(5-iodo-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 17 March 2009; accepted 26 March 2009; online 31 March 2009)

In the title mol­ecule, C16H19IO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. In the crystal, pairs of mol­ecules are linked by I⋯O [3.114 (3) Å] halogen bonding into centrosymmetric dimers. The crystal structure is further stabilized by weak inter­molecular C—H⋯O nonclassical hydrogen bonds.

Related literature

For the crystal structures of similar alkyl 2-(5-iodo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives, see Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o151.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o266.]). For a review of halogen bonding, see Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19IO4S

  • Mr = 434.27

  • Monoclinic, P 21 /n

  • a = 10.6726 (9) Å

  • b = 15.423 (1) Å

  • c = 10.7343 (9) Å

  • β = 102.334 (2)°

  • V = 1726.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 173 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.503, Tmax = 0.587 (expected range = 0.472–0.550)

  • 9111 measured reflections

  • 3357 independent reflections

  • 3152 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.079

  • S = 1.23

  • 3357 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.95 2.41 3.310 (5) 159
C16—H16C⋯O3ii 0.98 2.44 3.397 (5) 167
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing studies on the synthesis and structure of alkyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, we have recently described the crystal structure of propyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2009a) and butyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2009b). Here we report the crystal structure of the title compound, (I) (Fig. 1).

In (I), the benzofuran unit is essentially planar, with the mean deviation of 0.017 (3) Å from the least-squares plane defined by the nine constituent atoms. Two molecules are linked into centrosymmetric dimer by an I···O halogen bonding (Politzer et al., 2007) between the iodine atom and the oxygen of a neighbouring SO unit, with an I···O distance of 3.114 (3) Å. The molecular packing (Fig. 2) is stabilized by two intermolecular C—H···O nonclassical hydrogen bonds - between the benzene H atom and the SO unit, and between the methyl H atom of the methylsulfinyl substituent and the CO unit, respectively (Fig. 2 and Table 1).

Related literature top

For the crystal structures of similar alkyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate derivatives, see Choi et al. (2009a,b). For a review of halogen bonding, see Politzer et al. (2007).

Experimental top

The 77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of isoamyl 2-(5-iodo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (434 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate,1:2 v/v) to afford the title compound as a colorless solid [yield 79%, m.p. 412-413 K; Rf = 0.53 (hexane-ethyl acetate, 1;2 v/v )]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 0.91 (d, J = 6.6 Hz, 6H), 1.53 (q, J = 6.6 Hz, 2H), 1.61-1.72 (m, 1H), 3.07 (s, 3H), 4.03 (s, 2H), 4.18 (t, J = 6.96 Hz, 2H), 7.29 (d, J = 8.8 Hz, 1H), 7.66 (dd, J = 8.8 Hz and 1,84 Hz, 1H), 8.28 (d, J = 1.8 Hz, 1H); EI-MS 434 [M+].

Refinement top

In the title molecule, C16H19IO4S, the O atom and the methyl group of the methylsulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. Two molecules are linked by I···O [3.114 (3) Å] halogen bonding into a centrosymmetric dimer. The crystal structure is further stabilized by weak intermolecular C—H···O nonclassical hydrogen bonds.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. A portion of the crystal packing of (I) showing the C—H···O hydrogen bonds (dashed lines) and I···O halogen bonding (dotted lines) [symmetry codes: (i) -x+3/2, y+1/2, -z+3/2; (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y+1, -z+2]. H atoms not involved in hydrogen bonding are omitted for clarity.
3-Methylbutyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C16H19IO4SF(000) = 864
Mr = 434.27Dx = 1.671 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7114 reflections
a = 10.6726 (9) Åθ = 2.4–28.3°
b = 15.423 (1) ŵ = 1.99 mm1
c = 10.7343 (9) ÅT = 173 K
β = 102.334 (2)°Block, colourless
V = 1726.1 (2) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3357 independent reflections
Radiation source: fine-focus sealed tube3152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.4°
ϕ and ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1219
Tmin = 0.503, Tmax = 0.587l = 1213
9111 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.079H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0195P)2 + 3.2932P]
where P = (Fo2 + 2Fc2)/3
3357 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C16H19IO4SV = 1726.1 (2) Å3
Mr = 434.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6726 (9) ŵ = 1.99 mm1
b = 15.423 (1) ÅT = 173 K
c = 10.7343 (9) Å0.40 × 0.40 × 0.30 mm
β = 102.334 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3357 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
3152 reflections with I > 2σ(I)
Tmin = 0.503, Tmax = 0.587Rint = 0.026
9111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.23Δρmax = 0.56 e Å3
3357 reflectionsΔρmin = 0.71 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.98665 (2)0.636473 (16)0.87775 (2)0.03496 (10)
S0.60639 (9)0.32117 (6)0.94130 (8)0.0275 (2)
O10.4562 (2)0.47524 (17)0.6559 (2)0.0306 (6)
O20.1263 (2)0.34631 (17)0.6994 (2)0.0323 (6)
O30.2500 (3)0.43238 (19)0.8438 (3)0.0422 (7)
O40.7470 (2)0.30422 (17)0.9660 (3)0.0360 (6)
C10.5707 (3)0.4021 (2)0.8231 (3)0.0248 (7)
C20.6445 (3)0.4775 (2)0.8026 (3)0.0241 (7)
C30.7649 (3)0.5115 (2)0.8584 (3)0.0244 (7)
H30.81890.48450.92960.029*
C40.8018 (3)0.5868 (2)0.8045 (3)0.0281 (7)
C50.7231 (4)0.6290 (2)0.7033 (4)0.0311 (8)
H50.75150.68120.67130.037*
C60.6029 (4)0.5957 (2)0.6480 (3)0.0323 (8)
H60.54750.62390.57880.039*
C70.5685 (3)0.5196 (2)0.6990 (3)0.0275 (8)
C80.4610 (3)0.4037 (2)0.7323 (3)0.0290 (8)
C90.3470 (3)0.3461 (3)0.7034 (4)0.0329 (9)
H9A0.37070.28790.73980.040*
H9B0.31850.33990.60990.040*
C100.2375 (3)0.3817 (2)0.7578 (3)0.0285 (8)
C110.0149 (4)0.3741 (3)0.7474 (4)0.0439 (10)
H11A0.00560.43790.74120.053*
H11B0.02460.35710.83790.053*
C120.1006 (4)0.3307 (3)0.6670 (4)0.0366 (9)
H12A0.17570.34360.70420.044*
H12B0.08680.26720.67240.044*
C130.1330 (4)0.3561 (3)0.5274 (4)0.0409 (10)
H130.05640.34370.49050.049*
C140.2427 (5)0.2997 (4)0.4585 (6)0.080 (2)
H14A0.21750.23850.46840.120*
H14B0.26310.31470.36770.120*
H14C0.31830.30930.49490.120*
C150.1639 (5)0.4518 (4)0.5093 (5)0.0607 (14)
H15A0.24150.46490.54080.091*
H15B0.17810.46640.41850.091*
H15C0.09210.48610.55700.091*
C160.5774 (4)0.3837 (3)1.0723 (4)0.0367 (9)
H16A0.59520.34831.14990.055*
H16B0.48760.40251.05460.055*
H16C0.63350.43471.08440.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.03406 (15)0.03270 (15)0.03724 (15)0.01078 (10)0.00567 (10)0.00262 (11)
S0.0287 (5)0.0217 (4)0.0313 (4)0.0019 (3)0.0046 (4)0.0022 (3)
O10.0250 (13)0.0389 (14)0.0249 (12)0.0014 (11)0.0010 (10)0.0019 (11)
O20.0220 (12)0.0414 (15)0.0322 (13)0.0005 (11)0.0032 (10)0.0092 (11)
O30.0378 (16)0.0473 (17)0.0421 (16)0.0048 (13)0.0102 (13)0.0208 (14)
O40.0285 (14)0.0327 (14)0.0448 (16)0.0031 (11)0.0030 (12)0.0004 (12)
C10.0253 (17)0.0234 (17)0.0256 (17)0.0004 (14)0.0052 (14)0.0033 (14)
C20.0240 (17)0.0256 (17)0.0232 (16)0.0027 (14)0.0062 (13)0.0033 (13)
C30.0236 (17)0.0273 (17)0.0215 (16)0.0013 (14)0.0034 (13)0.0009 (13)
C40.0275 (18)0.0285 (18)0.0283 (18)0.0008 (15)0.0059 (14)0.0023 (15)
C50.038 (2)0.0248 (18)0.0326 (19)0.0008 (15)0.0128 (16)0.0011 (15)
C60.040 (2)0.0325 (19)0.0228 (17)0.0080 (17)0.0028 (15)0.0014 (15)
C70.0287 (19)0.0304 (18)0.0229 (16)0.0034 (15)0.0046 (14)0.0019 (14)
C80.0261 (18)0.0315 (19)0.0292 (18)0.0029 (15)0.0051 (14)0.0072 (15)
C90.0237 (18)0.035 (2)0.039 (2)0.0035 (15)0.0030 (16)0.0122 (16)
C100.0270 (18)0.0294 (18)0.0273 (17)0.0008 (15)0.0019 (14)0.0000 (15)
C110.030 (2)0.064 (3)0.039 (2)0.008 (2)0.0081 (17)0.009 (2)
C120.0242 (19)0.042 (2)0.045 (2)0.0004 (17)0.0108 (17)0.0001 (18)
C130.035 (2)0.046 (2)0.040 (2)0.0111 (19)0.0043 (18)0.0060 (19)
C140.048 (3)0.091 (5)0.089 (4)0.002 (3)0.014 (3)0.037 (4)
C150.059 (3)0.065 (3)0.058 (3)0.025 (3)0.014 (3)0.015 (3)
C160.049 (2)0.034 (2)0.0293 (19)0.0004 (18)0.0129 (17)0.0031 (16)
Geometric parameters (Å, º) top
I—C42.106 (4)C9—C101.515 (5)
I—O4i3.114 (3)C9—H9A0.9900
S—O41.490 (3)C9—H9B0.9900
S—C11.762 (4)C11—C121.503 (6)
S—C161.786 (4)C11—H11A0.9900
O1—C81.369 (5)C11—H11B0.9900
O1—C71.372 (4)C12—C131.516 (6)
O2—C101.335 (4)C12—H12A0.9900
O2—C111.457 (5)C12—H12B0.9900
O3—C101.195 (4)C13—C151.517 (6)
C1—C81.355 (5)C13—C141.518 (7)
C1—C21.448 (5)C13—H131.0000
C2—C71.390 (5)C14—H14A0.9800
C2—C31.398 (5)C14—H14B0.9800
C3—C41.391 (5)C14—H14C0.9800
C3—H30.9500C15—H15A0.9800
C4—C51.386 (5)C15—H15B0.9800
C5—C61.392 (5)C15—H15C0.9800
C5—H50.9500C16—H16A0.9800
C6—C71.379 (5)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C8—C91.484 (5)
C4—I—O4i169.4 (1)O2—C10—C9110.6 (3)
O4—S—C1107.9 (2)O2—C11—C12107.3 (3)
O4—S—C16107.0 (2)O2—C11—H11A110.3
C1—S—C1697.9 (2)C12—C11—H11A110.3
C8—O1—C7106.4 (3)O2—C11—H11B110.3
C10—O2—C11115.1 (3)C12—C11—H11B110.3
C8—C1—C2106.9 (3)H11A—C11—H11B108.5
C8—C1—S123.5 (3)C11—C12—C13116.0 (4)
C2—C1—S129.6 (3)C11—C12—H12A108.3
C7—C2—C3119.6 (3)C13—C12—H12A108.3
C7—C2—C1104.6 (3)C11—C12—H12B108.3
C3—C2—C1135.8 (3)C13—C12—H12B108.3
C4—C3—C2116.8 (3)H12A—C12—H12B107.4
C4—C3—H3121.6C12—C13—C15112.1 (4)
C2—C3—H3121.6C12—C13—C14108.8 (4)
C5—C4—C3122.7 (3)C15—C13—C14111.8 (4)
C5—C4—I119.0 (3)C12—C13—H13108.0
C3—C4—I118.3 (3)C15—C13—H13108.0
C4—C5—C6120.7 (3)C14—C13—H13108.0
C4—C5—H5119.6C13—C14—H14A109.5
C6—C5—H5119.6C13—C14—H14B109.5
C7—C6—C5116.3 (3)H14A—C14—H14B109.5
C7—C6—H6121.8C13—C14—H14C109.5
C5—C6—H6121.8H14A—C14—H14C109.5
O1—C7—C6125.3 (3)H14B—C14—H14C109.5
O1—C7—C2110.9 (3)C13—C15—H15A109.5
C6—C7—C2123.8 (3)C13—C15—H15B109.5
C1—C8—O1111.2 (3)H15A—C15—H15B109.5
C1—C8—C9133.1 (4)C13—C15—H15C109.5
O1—C8—C9115.7 (3)H15A—C15—H15C109.5
C8—C9—C10111.6 (3)H15B—C15—H15C109.5
C8—C9—H9A109.3S—C16—H16A109.5
C10—C9—H9A109.3S—C16—H16B109.5
C8—C9—H9B109.3H16A—C16—H16B109.5
C10—C9—H9B109.3S—C16—H16C109.5
H9A—C9—H9B108.0H16A—C16—H16C109.5
O3—C10—O2124.8 (4)H16B—C16—H16C109.5
O3—C10—C9124.5 (3)
O4—S—C1—C8144.4 (3)C3—C2—C7—O1178.4 (3)
C16—S—C1—C8104.9 (3)C1—C2—C7—O10.3 (4)
O4—S—C1—C236.8 (4)C3—C2—C7—C61.8 (5)
C16—S—C1—C274.0 (4)C1—C2—C7—C6179.5 (3)
C8—C1—C2—C71.0 (4)C2—C1—C8—O11.3 (4)
S—C1—C2—C7178.0 (3)S—C1—C8—O1177.8 (2)
C8—C1—C2—C3177.4 (4)C2—C1—C8—C9179.0 (4)
S—C1—C2—C33.6 (6)S—C1—C8—C90.0 (6)
C7—C2—C3—C40.4 (5)C7—O1—C8—C11.1 (4)
C1—C2—C3—C4177.7 (4)C7—O1—C8—C9179.3 (3)
C2—C3—C4—C52.2 (5)C1—C8—C9—C1098.3 (5)
C2—C3—C4—I176.4 (2)O1—C8—C9—C1079.4 (4)
O4i—I—C4—C5149.4 (5)C11—O2—C10—O30.4 (5)
O4i—I—C4—C331.9 (8)C11—O2—C10—C9178.1 (3)
C3—C4—C5—C61.9 (6)C8—C9—C10—O321.8 (6)
I—C4—C5—C6176.7 (3)C8—C9—C10—O2160.4 (3)
C4—C5—C6—C70.3 (5)C10—O2—C11—C12177.6 (3)
C8—O1—C7—C6179.7 (3)O2—C11—C12—C1364.3 (5)
C8—O1—C7—C20.4 (4)C11—C12—C13—C1561.6 (5)
C5—C6—C7—O1178.1 (3)C11—C12—C13—C14174.2 (4)
C5—C6—C7—C22.1 (5)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4ii0.952.413.310 (5)159
C16—H16C···O3iii0.982.443.397 (5)167
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H19IO4S
Mr434.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.6726 (9), 15.423 (1), 10.7343 (9)
β (°) 102.334 (2)
V3)1726.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.503, 0.587
No. of measured, independent and
observed [I > 2σ(I)] reflections
9111, 3357, 3152
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.079, 1.23
No. of reflections3357
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.71

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.952.413.310 (5)159.2
C16—H16C···O3ii0.982.443.397 (5)166.7
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+1, z+2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds