organic compounds
3-Methoxybenzaldehyde thiosemicarbazone
aDepartment of Light Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn
The title compound, C9H11N3OS, was prepared by the reaction of 3-methoxybenzaldehyde and thiosemicarbazide. The benzylidene ring and the thiosemicarbazone fragment are slightly twisted, making a dihedral angle of 14.1 (1)°. A weak intramolecular N—H⋯N hydrogen bond may influence the conformation of the molecule. Intermolecular N—H⋯S hydrogen bonds build up a three-dimensional network.
Related literature
For a general background to thiosemicarbazone compounds, see: Casas et al. (2000); Tarafder et al. (2000); Ferrari et al. (2000); Deschamps et al. (2003); Maccioni et al. (2003); Chimenti et al.(2007). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680901040X/dn2432sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680901040X/dn2432Isup2.hkl
A mixture of 3-methoxybenzaldehyde (1.36 g, 0.01 mol) and hydrazinecarbothioamide (0.91 g, 0.01 mol) in 20 ml of absolute methanol was refluxed for about 3 h. On cooling, the solid separated was filtered and recrystallized from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate. 1H NMR (DMSO, δ, p.p.m.) 11.39 (s, 1 H), 8.17 (s, 1 H), 8.02 (s,2 H), 7.42 (m, 1 H), 7.30 (t, 2 H), 6.99 (t,1 H), 3.79 (t, 3 H).
All H atoms were positioned geometrically, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and N—H = 0.86 Å, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for C(aromatic) and N atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H11N3OS | F(000) = 440 |
Mr = 209.27 | Dx = 1.359 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 27 reflections |
a = 11.814 (2) Å | θ = 1–25° |
b = 5.6760 (11) Å | µ = 0.29 mm−1 |
c = 15.248 (3) Å | T = 293 K |
β = 90.29 (3)° | Block, colorless |
V = 1022.5 (3) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1494 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.017 |
Graphite monochromator | θmax = 25.3°, θmin = 1.7° |
ω/2θ scans | h = −14→0 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→6 |
Tmin = 0.908, Tmax = 0.969 | l = −18→18 |
1946 measured reflections | 3 standard reflections every 200 reflections |
1852 independent reflections | intensity decay: 9% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0521P)2 + 0.3815P] where P = (Fo2 + 2Fc2)/3 |
1852 reflections | (Δ/σ)max < 0.001 |
128 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C9H11N3OS | V = 1022.5 (3) Å3 |
Mr = 209.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.814 (2) Å | µ = 0.29 mm−1 |
b = 5.6760 (11) Å | T = 293 K |
c = 15.248 (3) Å | 0.30 × 0.20 × 0.10 mm |
β = 90.29 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1494 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.017 |
Tmin = 0.908, Tmax = 0.969 | 3 standard reflections every 200 reflections |
1946 measured reflections | intensity decay: 9% |
1852 independent reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.20 e Å−3 |
1852 reflections | Δρmin = −0.26 e Å−3 |
128 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.51511 (6) | 1.47619 (10) | 0.35880 (3) | 0.0442 (2) | |
O1 | 0.85492 (14) | 0.6407 (3) | 0.83956 (9) | 0.0496 (5) | |
N1 | 0.66878 (15) | 1.0213 (3) | 0.50804 (11) | 0.0369 (4) | |
N2 | 0.60984 (16) | 1.2149 (3) | 0.47967 (11) | 0.0407 (5) | |
H2 | 0.5936 | 1.3268 | 0.5155 | 0.049* | |
N3 | 0.59915 (18) | 1.0451 (4) | 0.34546 (12) | 0.0497 (5) | |
H3A | 0.6324 | 0.9237 | 0.3674 | 0.060* | |
H3B | 0.5800 | 1.0463 | 0.2910 | 0.060* | |
C1 | 0.9085 (2) | 0.4449 (6) | 0.88050 (16) | 0.0614 (8) | |
H1A | 0.9862 | 0.4377 | 0.8627 | 0.092* | |
H1B | 0.8706 | 0.3024 | 0.8634 | 0.092* | |
H1C | 0.9049 | 0.4624 | 0.9430 | 0.092* | |
C2 | 0.84356 (18) | 0.6327 (4) | 0.75008 (14) | 0.0383 (5) | |
C3 | 0.77906 (17) | 0.8120 (4) | 0.71427 (13) | 0.0366 (5) | |
H3 | 0.7479 | 0.9264 | 0.7505 | 0.044* | |
C4 | 0.76070 (17) | 0.8221 (4) | 0.62447 (13) | 0.0350 (5) | |
C5 | 0.8097 (2) | 0.6510 (4) | 0.57024 (14) | 0.0428 (6) | |
H5 | 0.7982 | 0.6566 | 0.5099 | 0.051* | |
C6 | 0.8741 (2) | 0.4764 (4) | 0.60621 (16) | 0.0503 (6) | |
H6 | 0.9071 | 0.3642 | 0.5700 | 0.060* | |
C7 | 0.8914 (2) | 0.4638 (4) | 0.69715 (16) | 0.0472 (6) | |
H7 | 0.9346 | 0.3430 | 0.7214 | 0.057* | |
C8 | 0.69256 (18) | 1.0136 (4) | 0.58932 (13) | 0.0379 (5) | |
H8 | 0.6663 | 1.1311 | 0.6265 | 0.045* | |
C9 | 0.57769 (17) | 1.2279 (4) | 0.39499 (13) | 0.0332 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0643 (4) | 0.0374 (3) | 0.0309 (3) | 0.0090 (3) | −0.0081 (3) | 0.0035 (2) |
O1 | 0.0534 (10) | 0.0621 (12) | 0.0333 (8) | 0.0106 (9) | −0.0062 (7) | 0.0109 (8) |
N1 | 0.0429 (10) | 0.0363 (10) | 0.0315 (9) | 0.0058 (9) | −0.0045 (8) | 0.0024 (8) |
N2 | 0.0555 (12) | 0.0378 (11) | 0.0286 (9) | 0.0118 (9) | −0.0091 (8) | −0.0020 (8) |
N3 | 0.0732 (14) | 0.0442 (12) | 0.0315 (9) | 0.0164 (11) | −0.0128 (9) | −0.0056 (9) |
C1 | 0.0631 (16) | 0.077 (2) | 0.0444 (14) | 0.0194 (15) | −0.0057 (12) | 0.0225 (14) |
C2 | 0.0335 (11) | 0.0471 (14) | 0.0343 (11) | −0.0031 (10) | −0.0041 (9) | 0.0072 (10) |
C3 | 0.0338 (11) | 0.0429 (13) | 0.0331 (11) | 0.0020 (10) | 0.0002 (9) | 0.0024 (10) |
C4 | 0.0331 (11) | 0.0380 (12) | 0.0340 (11) | −0.0035 (10) | −0.0043 (9) | 0.0045 (10) |
C5 | 0.0526 (14) | 0.0413 (14) | 0.0346 (11) | 0.0013 (11) | −0.0061 (10) | −0.0020 (10) |
C6 | 0.0622 (16) | 0.0432 (14) | 0.0454 (13) | 0.0109 (12) | −0.0051 (12) | −0.0084 (11) |
C7 | 0.0517 (14) | 0.0401 (13) | 0.0497 (14) | 0.0076 (11) | −0.0091 (11) | 0.0061 (11) |
C8 | 0.0389 (11) | 0.0439 (13) | 0.0309 (11) | 0.0039 (10) | −0.0012 (9) | 0.0002 (10) |
C9 | 0.0372 (11) | 0.0357 (12) | 0.0266 (10) | −0.0032 (10) | −0.0024 (8) | 0.0015 (9) |
S1—C9 | 1.683 (2) | C2—C7 | 1.377 (3) |
O1—C2 | 1.371 (2) | C2—C3 | 1.382 (3) |
O1—C1 | 1.422 (3) | C3—C4 | 1.386 (3) |
N1—C8 | 1.270 (3) | C3—H3 | 0.9300 |
N1—N2 | 1.370 (2) | C4—C5 | 1.402 (3) |
N2—C9 | 1.346 (3) | C4—C8 | 1.454 (3) |
N2—H2 | 0.8600 | C5—C6 | 1.363 (3) |
N3—C9 | 1.309 (3) | C5—H5 | 0.9300 |
N3—H3A | 0.8600 | C6—C7 | 1.402 (3) |
N3—H3B | 0.8600 | C6—H6 | 0.9300 |
C1—H1A | 0.9600 | C7—H7 | 0.9300 |
C1—H1B | 0.9600 | C8—H8 | 0.9300 |
C1—H1C | 0.9600 | ||
C2—O1—C1 | 116.9 (2) | C4—C3—H3 | 119.9 |
C8—N1—N2 | 116.44 (18) | C3—C4—C5 | 119.4 (2) |
C9—N2—N1 | 119.16 (18) | C3—C4—C8 | 118.6 (2) |
C9—N2—H2 | 120.4 | C5—C4—C8 | 122.00 (19) |
N1—N2—H2 | 120.4 | C6—C5—C4 | 119.8 (2) |
C9—N3—H3A | 120.0 | C6—C5—H5 | 120.1 |
C9—N3—H3B | 120.0 | C4—C5—H5 | 120.1 |
H3A—N3—H3B | 120.0 | C5—C6—C7 | 120.9 (2) |
O1—C1—H1A | 109.5 | C5—C6—H6 | 119.6 |
O1—C1—H1B | 109.5 | C7—C6—H6 | 119.6 |
H1A—C1—H1B | 109.5 | C2—C7—C6 | 119.1 (2) |
O1—C1—H1C | 109.5 | C2—C7—H7 | 120.5 |
H1A—C1—H1C | 109.5 | C6—C7—H7 | 120.5 |
H1B—C1—H1C | 109.5 | N1—C8—C4 | 120.3 (2) |
O1—C2—C7 | 124.6 (2) | N1—C8—H8 | 119.8 |
O1—C2—C3 | 114.8 (2) | C4—C8—H8 | 119.8 |
C7—C2—C3 | 120.6 (2) | N3—C9—N2 | 117.1 (2) |
C2—C3—C4 | 120.2 (2) | N3—C9—S1 | 124.11 (16) |
C2—C3—H3 | 119.9 | N2—C9—S1 | 118.78 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···S1i | 0.86 | 2.57 | 3.370 (2) | 156 |
N3—H3B···S1ii | 0.86 | 2.57 | 3.411 (2) | 166 |
N3—H3A···N1 | 0.86 | 2.25 | 2.611 (3) | 105 |
Symmetry codes: (i) −x+1, −y+3, −z+1; (ii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H11N3OS |
Mr | 209.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.814 (2), 5.6760 (11), 15.248 (3) |
β (°) | 90.29 (3) |
V (Å3) | 1022.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.908, 0.969 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1946, 1852, 1494 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.110, 1.06 |
No. of reflections | 1852 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.26 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···S1i | 0.86 | 2.57 | 3.370 (2) | 155.5 |
N3—H3B···S1ii | 0.86 | 2.57 | 3.411 (2) | 165.6 |
N3—H3A···N1 | 0.86 | 2.25 | 2.611 (3) | 104.9 |
Symmetry codes: (i) −x+1, −y+3, −z+1; (ii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261. Web of Science CrossRef CAS Google Scholar
Chimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707–712. Web of Science CrossRef PubMed CAS Google Scholar
Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368. Web of Science CSD CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89–97. Web of Science CSD CrossRef PubMed CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco, 58, 951–959. CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazones constitute an important class of N,S donor ligands due to their propensity to react with a wide range of metals (Casas et al., 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni et al., 2003; Ferrari et al., 2000). They have been evaluated as antiviral, antibacterial and anticancer therapeutics. Thiosemicarbazones belong to a large group of thiourea derivatives, whose biological activities are a function of parent aldehyde or ketone moiety (Chimenti et al., 2007). Schiff bases show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and so have biochemical and pharmacological applications. We here report the crystal structure of the title compound (I).
The sulfur atom and the hydrazine nitrogen N1 are in trans position with respect to the C9–N2 bond. This conformation may be induced by the weak intramolecular N-H···N hydrogen bond (Fig. 1, Table 1). All bond lengths are within normal ranges (Allen et al., 1987).
At first glance the molecule is roughly planar with the largest deviation from the mean plane being -0.272 (3) Å at N3, however the benzaldehyde ring and the thiosemicarbazone fragment are twisted with respect to each other making a dihedral angle of 14.1 (1)°.
The molecules are connected by intermolecular N—H···S hydrogen bonds which build up a three dimensional network (Table 1, Fig.2).