organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­methyl­phenyl benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 March 2009; accepted 25 March 2009; online 28 March 2009)

In the title compound, C15H14O2, the plane of the central –C(=O)–O– group is inclined at an angle of 3.7 (2)° with respect to the benzoate ring. The two benzene rings are almost perpendicular, making a dihedral angle of 87.4 (1)°. In the crystal, mol­ecules are packed into infinite chains through weak C—H⋯π inter­actions.

Related literature

For the preparation of the compound, see: Nayak & Gowda (2009[Nayak, R. & Gowda, B. T. (2009). Z. Naturforsch. Teil A, 63. In preparation.]); For related structures, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o844.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1280.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O2

  • Mr = 226.26

  • Monoclinic, P 21 /c

  • a = 8.1095 (4) Å

  • b = 9.8569 (4) Å

  • c = 15.8805 (10) Å

  • β = 105.617 (5)°

  • V = 1222.54 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.51 × 0.37 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Ruby (Gemini Mo) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.958, Tmax = 0.982

  • 29473 measured reflections

  • 2330 independent reflections

  • 1890 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.07

  • 2330 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯CT1i 0.93 2.92 3.7477 (14) 148
C6—H6⋯CT1ii 0.93 2.91 3.6495 (14) 137
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]. CT1 is the centroid of the benzoate ring C8–C13.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of a study of the substituent effects on the solid state geometries of aryl benzoates (Gowda et al., 2008a, b), in the present work, the structure of 2,5-dimethylphenyl benzoate (25DMPBA) has been determined. The structure of 25DMPBA (Fig. 1) is similar to those of 2,3-dimethylphenyl benzoate (23DMPBA) (Gowda et al., 2008a), 2,4-dimethylphenyl benzoate (24DMPBA) (Gowda et al., 2008b) and other aryl benzoates. The plane of central –O—C—O– group in 25DMPBA makes the dihedral angle of 3.7 (2)° with respect to the benzoate ring, compared with the value of 5.7 (1)° in the structure of 24DMPBA. The two aromatic rings in 25DMPBA form a dihedral angle of 87.4 (1)°, in comparison with the corresponding angle of 80.3 (1)° in 24DMPBA. The other bond parameters in 25DMPBA are similar to those in 23DMPBA, 24DMPBA and other aryl benzoates.

The molecules in the structure are packed into infinite chains through weak C-H···π interactions between some H atoms of the phenyl ring and the benzoate ring centroids. The first intermoleculer interaction includes the atoms C3, H3 and the benzoate ring centroid CT1 at the symmetry position (x-1,y,z). The second interaction includes C6, H6 and the benzoate ring centroid CT1 at the position (x,-y+3/2,z+1/2)(Fig. 2).

Related literature top

For the preparation of the compound, see: Nayak & Gowda (2009); For related structures, see: Gowda et al. (2008a,b). CT1 is the centroid of the benzoate ring C8–C13.

Experimental top

The title compound was prepared according to a literature method (Nayak & Gowda, 2009). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2009). Single crystals of the title compound were obtained by slow evaporation of its ethanol solution. The X-ray diffraction studies were made at room temperature.

Refinement top

H atoms were positioned geometrically and refined within a riding model with C—H distances of 0.93 or 0.96 Å and Uiso(H) = 1.2 (1.5 for methyl) times Ueq(C). Methyl groups were refined as freely rotating groups, using HFIX 137 command.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I) viewed down the b axis. Infinite chains generated via C-H···π interactions are shown as dotted lines. CT1 is the benzoate ring (C8 to C13) centroid. H atoms not involved in hydrogen bonding were omitted. [Symmetry codes: (i) x-1,y,z; (ii) x,-y+3/2,z+1/2].
2,5-Dimethylphenyl benzoate top
Crystal data top
C15H14O2F(000) = 480
Mr = 226.26Dx = 1.229 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15569 reflections
a = 8.1095 (4) Åθ = 3.2–29.5°
b = 9.8569 (4) ŵ = 0.08 mm1
c = 15.8805 (10) ÅT = 295 K
β = 105.617 (5)°Block, colourless
V = 1222.54 (11) Å30.51 × 0.37 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Ruby (Gemini Mo) detector
2330 independent reflections
Graphite monochromator1890 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.025
ω scansθmax = 25.9°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.958, Tmax = 0.982k = 1212
29473 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.051P)2 + 0.1667P]
where P = (Fo2 + 2Fc2)/3
2330 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.10 e Å3
Crystal data top
C15H14O2V = 1222.54 (11) Å3
Mr = 226.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1095 (4) ŵ = 0.08 mm1
b = 9.8569 (4) ÅT = 295 K
c = 15.8805 (10) Å0.51 × 0.37 × 0.28 mm
β = 105.617 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Ruby (Gemini Mo) detector
2330 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1890 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.982Rint = 0.025
29473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.07Δρmax = 0.14 e Å3
2330 reflectionsΔρmin = 0.10 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08573 (11)0.73415 (10)0.37466 (6)0.0590 (3)
O20.16712 (13)0.79648 (13)0.28463 (7)0.0766 (3)
C10.08701 (16)0.75141 (14)0.35356 (8)0.0522 (3)
C20.16012 (16)0.70922 (12)0.42546 (8)0.0478 (3)
C30.33645 (17)0.71460 (15)0.41159 (9)0.0586 (4)
H30.40580.74470.35830.070*
C40.40821 (19)0.67532 (17)0.47672 (10)0.0671 (4)
H40.52640.67780.46730.080*
C50.30493 (19)0.63207 (16)0.55630 (10)0.0669 (4)
H50.35400.60580.60040.080*
C60.13073 (18)0.62763 (15)0.57060 (9)0.0606 (4)
H60.06180.59930.62450.073*
C70.05770 (17)0.66498 (13)0.50552 (8)0.0520 (3)
H70.06050.66060.51510.062*
C80.16784 (16)0.77386 (14)0.31055 (8)0.0529 (3)
C90.22655 (16)0.90581 (15)0.31172 (8)0.0577 (3)
C100.30805 (18)0.93723 (17)0.24763 (9)0.0665 (4)
H100.34871.02490.24490.080*
C110.33025 (18)0.84237 (19)0.18820 (9)0.0681 (4)
H110.38450.86770.14600.082*
C120.27415 (17)0.71068 (17)0.18959 (9)0.0626 (4)
C130.19194 (17)0.67728 (15)0.25320 (8)0.0570 (3)
H130.15330.58920.25670.068*
C140.2076 (2)1.00775 (18)0.37817 (11)0.0801 (5)
H14A0.09730.99750.38900.120*
H14B0.21751.09750.35660.120*
H14C0.29560.99380.43160.120*
C150.2950 (2)0.6074 (2)0.12344 (11)0.0871 (5)
H15A0.19040.60080.07760.131*
H15B0.32170.52070.15140.131*
H15C0.38620.63480.09920.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0521 (5)0.0796 (6)0.0484 (5)0.0000 (4)0.0188 (4)0.0125 (4)
O20.0609 (6)0.1169 (9)0.0518 (6)0.0068 (6)0.0147 (5)0.0194 (6)
C10.0531 (7)0.0587 (7)0.0451 (7)0.0021 (6)0.0138 (6)0.0006 (6)
C20.0517 (7)0.0480 (7)0.0454 (6)0.0037 (5)0.0159 (5)0.0056 (5)
C30.0530 (7)0.0680 (9)0.0545 (8)0.0003 (6)0.0137 (6)0.0014 (6)
C40.0521 (8)0.0831 (10)0.0720 (9)0.0040 (7)0.0269 (7)0.0051 (8)
C50.0696 (9)0.0770 (9)0.0643 (9)0.0056 (7)0.0357 (7)0.0002 (7)
C60.0664 (9)0.0697 (9)0.0487 (7)0.0003 (7)0.0204 (6)0.0034 (6)
C70.0517 (7)0.0576 (7)0.0484 (7)0.0025 (6)0.0163 (5)0.0028 (6)
C80.0455 (7)0.0698 (8)0.0432 (6)0.0006 (6)0.0116 (5)0.0114 (6)
C90.0513 (7)0.0689 (8)0.0492 (7)0.0028 (6)0.0070 (6)0.0075 (6)
C100.0558 (8)0.0794 (10)0.0607 (8)0.0133 (7)0.0096 (7)0.0171 (7)
C110.0494 (8)0.1034 (12)0.0545 (8)0.0048 (8)0.0190 (6)0.0147 (8)
C120.0476 (7)0.0890 (11)0.0518 (7)0.0099 (7)0.0144 (6)0.0083 (7)
C130.0521 (7)0.0665 (8)0.0527 (7)0.0014 (6)0.0146 (6)0.0075 (6)
C140.0914 (12)0.0787 (11)0.0666 (9)0.0073 (9)0.0153 (8)0.0050 (8)
C150.0837 (12)0.1139 (14)0.0708 (10)0.0228 (10)0.0329 (9)0.0025 (10)
Geometric parameters (Å, º) top
O1—C11.3605 (16)C8—C91.383 (2)
O1—C81.4136 (15)C9—C101.3895 (19)
O2—C11.1977 (16)C9—C141.495 (2)
C1—C21.4807 (17)C10—C111.374 (2)
C2—C31.3880 (18)C10—H100.9300
C2—C71.3885 (18)C11—C121.378 (2)
C3—C41.372 (2)C11—H110.9300
C3—H30.9300C12—C131.3913 (19)
C4—C51.382 (2)C12—C151.505 (2)
C4—H40.9300C13—H130.9300
C5—C61.370 (2)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.3727 (18)C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—C131.367 (2)C15—H15C0.9600
C1—O1—C8116.19 (10)C8—C9—C14122.75 (13)
O2—C1—O1122.74 (12)C10—C9—C14121.80 (14)
O2—C1—C2125.28 (12)C11—C10—C9121.83 (14)
O1—C1—C2111.98 (10)C11—C10—H10119.1
C3—C2—C7119.61 (12)C9—C10—H10119.1
C3—C2—C1118.43 (11)C10—C11—C12121.67 (13)
C7—C2—C1121.96 (11)C10—C11—H11119.2
C4—C3—C2119.83 (13)C12—C11—H11119.2
C4—C3—H3120.1C11—C12—C13117.36 (14)
C2—C3—H3120.1C11—C12—C15121.77 (14)
C3—C4—C5120.05 (13)C13—C12—C15120.84 (15)
C3—C4—H4120.0C8—C13—C12120.07 (14)
C5—C4—H4120.0C8—C13—H13120.0
C6—C5—C4120.36 (13)C12—C13—H13120.0
C6—C5—H5119.8C9—C14—H14A109.5
C4—C5—H5119.8C9—C14—H14B109.5
C5—C6—C7120.09 (13)H14A—C14—H14B109.5
C5—C6—H6120.0C9—C14—H14C109.5
C7—C6—H6120.0H14A—C14—H14C109.5
C6—C7—C2120.05 (12)H14B—C14—H14C109.5
C6—C7—H7120.0C12—C15—H15A109.5
C2—C7—H7120.0C12—C15—H15B109.5
C13—C8—C9123.58 (12)H15A—C15—H15B109.5
C13—C8—O1117.80 (12)C12—C15—H15C109.5
C9—C8—O1118.54 (12)H15A—C15—H15C109.5
C8—C9—C10115.44 (14)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···CT1i0.932.923.7477 (14)148
C6—H6···CT1ii0.932.913.6495 (14)137
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14O2
Mr226.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.1095 (4), 9.8569 (4), 15.8805 (10)
β (°) 105.617 (5)
V3)1222.54 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.51 × 0.37 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Ruby (Gemini Mo) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.958, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
29473, 2330, 1890
Rint0.025
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.07
No. of reflections2330
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.10

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···CT1i0.932.923.7477 (14)148.2
C6—H6···CT1ii0.932.913.6495 (14)137.0
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o844.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2009). Z. Naturforsch. Teil A, 63. In preparation.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds