metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-bromo­acetato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)copper(II)

aDepartment of Materials and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: klsz79@163.com

(Received 17 January 2009; accepted 13 March 2009; online 19 March 2009)

The two halves of the title compound, [Cu(C2H2BrO2)2(C12H8N2)], are related by twofold symmetry along the b axis through the central CuII ion. The CuII ion is coordinated by two symmetry-related N atoms from the 1,10-phenanthroline ligand and four O atoms from two 2-bromo­acetate ligands, showing a distorted octahedral geometry. Weak inter­molecular C—H⋯O inter­actions link neighbouring mol­ecules.

Related literature

For a report on mononuclear, monomeric and polymeric metal complexes, see: Liu et al. (2006[Liu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). Acta Cryst. E62, m2030-m2032.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H2BrO2)2(C12H8N2)]

  • Mr = 519.64

  • Monoclinic, C 2/c

  • a = 10.3898 (16) Å

  • b = 17.974 (2) Å

  • c = 10.182 (3) Å

  • β = 116.142 (19)°

  • V = 1707.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.99 mm−1

  • T = 273 K

  • 0.31 × 0.29 × 0.27 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.258, Tmax = 0.295 (expected range = 0.174–0.199)

  • 3953 measured reflections

  • 1505 independent reflections

  • 984 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.148

  • S = 1.00

  • 1505 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.941 (5)
Cu1—N1 2.016 (6)
Cu1—O1 2.725 (5)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes with carboxylates are among the most investigated complexes in the field of coordination chemistry. Due to their versatile bonding modes with metal ions, they have been used in the synthesis of mononuclear, monomeric and polymeric complexes (Liu et al., 2006). In order to develop new topological structures, we have studied the reaction of the copper(II) ion and 2-bromoacetic acid with the presence of 1,10-phenanthroline.

The molecular structure and a unit cell of the title complex are shown in Figs. 1 and 2. The Cu atom exhibits a six-coordinated distorted octahedral geometry. The two strongly bound carboxyl O atoms (Cu—O 1.941 (5) Å) and the two N atoms (Cu—N 2.016 (6) Å) occupy the equatorial positions. The two weakly bound O atoms (Cu1—O1 2.725 (5) Å) lie in the apical positions. Weak intermolecular C—H···O hydrogen bonds link the molecules into a one-dimensional chain structure along the c axis.

Related literature top

For a report on mononuclear, monomeric and polymeric metal complexes, see: Liu et al., 2006.

Experimental top

The reaction was carried out by the solvothermal method. 2-bromoacetic acid (0.104 g, 2 mmol) and cupric acetate (0.199 g, 1 mmol) and 1,10-phenanthroline (0.180 g, 1 mmol) were added to the airtight vessel with 20 ml water. The resulting green solution was filtered. The filtrate was placed for several days yielding blue block-shaped crystals. Yield: 78%. Elemental analysis: calc. for C16H12CuBr2N2O4: C 36.98, H 2.33, N 5.39; found: C 36.75, H 2.49, N 5.22. The elemental analyses were performed with PERKIN ELMER model 2400 series II.

Refinement top

All the H atoms were found in Fourier map, but placed in idealized positions (C—H 0.93–0.97 Å, O—H 0.85 Å), with the Uiso(H) values set at 1.2Ueq(C,O) of the parent atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The stacking of the title compound into one-dimensional chains along the c axis. C—H···O interactions are indicated by dashed lines.
Bis(2-bromoacetato-κ2O,O')(1,10-phenanthroline- κ2N,N')copper(II) top
Crystal data top
[Cu(C2H2BrO2)2(C12H8N2)]F(000) = 1012
Mr = 519.64Dx = 2.022 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.3898 (16) ÅCell parameters from 1329 reflections
b = 17.974 (2) Åθ = 2.5–25.5°
c = 10.182 (3) ŵ = 5.99 mm1
β = 116.142 (19)°T = 273 K
V = 1707.0 (7) Å3Block, blue
Z = 40.31 × 0.29 × 0.27 mm
Data collection top
Bruker SMART APEX
diffractometer
1505 independent reflections
Radiation source: fine-focus sealed tube984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.258, Tmax = 0.295k = 1421
3953 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.08P)2]
where P = (Fo2 + 2Fc2)/3
1505 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Cu(C2H2BrO2)2(C12H8N2)]V = 1707.0 (7) Å3
Mr = 519.64Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.3898 (16) ŵ = 5.99 mm1
b = 17.974 (2) ÅT = 273 K
c = 10.182 (3) Å0.31 × 0.29 × 0.27 mm
β = 116.142 (19)°
Data collection top
Bruker SMART APEX
diffractometer
1505 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
984 reflections with I > 2σ(I)
Tmin = 0.258, Tmax = 0.295Rint = 0.066
3953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.00Δρmax = 1.11 e Å3
1505 reflectionsΔρmin = 0.78 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.05952 (7)0.25000.0345 (4)
N11.0486 (6)0.1441 (3)0.3940 (6)0.0344 (14)
O10.7140 (6)0.0296 (3)0.1339 (6)0.0598 (17)
O20.8977 (6)0.0134 (3)0.0992 (6)0.0486 (14)
Br10.72014 (9)0.15682 (5)0.05512 (9)0.0529 (4)
C10.6633 (8)0.0541 (4)0.0643 (8)0.0418 (19)
H1A0.66040.03150.15220.050*
H1B0.56750.05170.07050.050*
C20.7655 (8)0.0101 (4)0.0685 (7)0.0344 (17)
C31.0941 (7)0.1419 (5)0.5403 (8)0.042 (2)
H31.10740.09600.58660.051*
C41.1215 (8)0.2065 (5)0.6232 (8)0.045 (2)
H41.15300.20310.72380.054*
C51.1031 (7)0.2740 (5)0.5597 (8)0.0416 (19)
H51.12420.31700.61620.050*
C61.0505 (7)0.2786 (4)0.4043 (8)0.0336 (17)
C71.0261 (7)0.2126 (4)0.3290 (7)0.0277 (15)
C81.0229 (9)0.3460 (4)0.3253 (9)0.045 (2)
H81.03540.39100.37460.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0365 (7)0.0306 (8)0.0303 (7)0.0000.0092 (6)0.000
N10.038 (3)0.042 (4)0.020 (3)0.001 (3)0.010 (3)0.002 (3)
O10.065 (4)0.081 (5)0.042 (3)0.013 (3)0.031 (3)0.026 (3)
O20.044 (3)0.036 (3)0.055 (4)0.000 (2)0.012 (3)0.012 (3)
Br10.0681 (7)0.0460 (6)0.0436 (6)0.0113 (4)0.0236 (5)0.0127 (4)
C10.048 (4)0.050 (5)0.022 (4)0.013 (4)0.010 (3)0.009 (4)
C20.049 (5)0.028 (4)0.023 (4)0.000 (3)0.012 (4)0.004 (3)
C30.039 (4)0.060 (6)0.030 (4)0.001 (4)0.017 (4)0.012 (4)
C40.048 (5)0.063 (6)0.021 (4)0.000 (4)0.012 (4)0.011 (4)
C50.049 (5)0.044 (5)0.032 (4)0.008 (4)0.018 (4)0.017 (4)
C60.044 (4)0.025 (4)0.037 (4)0.006 (3)0.022 (4)0.006 (3)
C70.036 (4)0.031 (4)0.019 (3)0.003 (3)0.015 (3)0.000 (3)
C80.056 (5)0.030 (5)0.046 (5)0.001 (4)0.020 (4)0.007 (4)
Geometric parameters (Å, º) top
Cu1—O21.941 (5)C1—H1B0.9700
Cu1—O2i1.941 (5)C3—C41.389 (11)
Cu1—N12.016 (6)C3—H30.9300
Cu1—N1i2.016 (6)C4—C51.348 (11)
Cu1—O12.725 (5)C4—H40.9300
N1—C31.350 (9)C5—C61.431 (10)
N1—C71.368 (8)C5—H50.9300
O1—C21.246 (8)C6—C71.374 (9)
O2—C21.268 (8)C6—C81.412 (10)
Br1—C11.929 (7)C7—C7i1.455 (12)
C1—C21.521 (10)C8—C8i1.392 (16)
C1—H1A0.9700C8—H80.9300
O2—Cu1—O2i95.1 (3)O1—C2—O2124.6 (7)
O2—Cu1—N1163.5 (2)O1—C2—C1118.5 (7)
O2i—Cu1—N193.4 (2)O2—C2—C1116.8 (6)
O2—Cu1—N1i93.4 (2)N1—C3—C4121.6 (7)
O2i—Cu1—N1i163.5 (2)N1—C3—H3119.2
N1—Cu1—N1i82.1 (3)C4—C3—H3119.2
O2—Cu1—O153.88 (19)C5—C4—C3120.9 (7)
O2i—Cu1—O1108.8 (2)C5—C4—H4119.6
N1—Cu1—O1109.9 (2)C3—C4—H4119.6
N1i—Cu1—O187.6 (2)C4—C5—C6119.1 (7)
C3—N1—C7117.5 (6)C4—C5—H5120.5
C3—N1—Cu1129.3 (5)C6—C5—H5120.5
C7—N1—Cu1113.1 (4)C7—C6—C8118.8 (6)
C2—O1—Cu172.7 (4)C7—C6—C5117.0 (6)
C2—O2—Cu1108.7 (5)C8—C6—C5124.2 (7)
C2—C1—Br1112.0 (5)N1—C7—C6123.9 (5)
C2—C1—H1A109.2N1—C7—C7i115.8 (3)
Br1—C1—H1A109.2C6—C7—C7i120.3 (4)
C2—C1—H1B109.2C8i—C8—C6120.8 (4)
Br1—C1—H1B109.2C8i—C8—H8119.6
H1A—C1—H1B107.9C6—C8—H8119.6
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C2H2BrO2)2(C12H8N2)]
Mr519.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)10.3898 (16), 17.974 (2), 10.182 (3)
β (°) 116.142 (19)
V3)1707.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.99
Crystal size (mm)0.31 × 0.29 × 0.27
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.258, 0.295
No. of measured, independent and
observed [I > 2σ(I)] reflections
3953, 1505, 984
Rint0.066
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.148, 1.00
No. of reflections1505
No. of parameters114
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.78

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O21.941 (5)Cu1—N1i2.016 (6)
Cu1—O2i1.941 (5)Cu1—O12.725 (5)
Cu1—N12.016 (6)
Symmetry code: (i) x+2, y, z+1/2.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University (No. Y07-2-15) for financial support.

References

First citationLiu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). Acta Cryst. E62, m2030–m2032.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds