organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o853-o854

O-Pivaloyl di­phenyl­seleno­phosphinate

aChemical Faculty, Gdansk University of Technology, Narutowicza 11/12, Gdansk PL-80233, Poland
*Correspondence e-mail: jaroslaw.chojnacki@chem.pg.gda.pl

(Received 23 January 2009; accepted 13 March 2009; online 25 March 2009)

The title compound, C17H19O2PSe, was obtained in the reaction of the diphenyl­monoseleno­phosphinic acid ammonium salt with pivaloyl chloride. The P—Se bond length of 2.0769 (11) Å is normal, while the P—O bond length of 1.650 (3) Å is longer than in related O-alkyl and O-aryl derivatives. One phenyl ring is periplanar to the Se—P—C plane, while the dihedral angle between the two phenyl rings is ca 73°. The carbonyl group is in a synperiplanar position [torsion angle = 8.9 (6)°] to one of the methyl groups of the pivaloyl group. This is the first O-acyl derivative of diphenyl­monoseleno­phosphinic acid characterized by X-ray structural analysis.

Related literature

Syntheses and the chemical properties of O-acyl monoseleno­phosphates have already been described by Rachon et al. (2005[Rachon, J., Cholewinski, G. & Witt, D. (2005). Chem. Commun. pp. 2692-2694.]). For other monoseleno­phosphates, such as O-alkyl or O-aryl esters, see: Lepicard et al. (1969[Lepicard, G., de Saint-Giniez-Liebig, D., Laurent, A. & Rérat, C. (1969). Acta Cryst. B25, 617-624.]); Balakrishna et al. (2002[Balakrishna, M. S., Panda, R. & Mague, J. T. (2002). J. Chem. Soc. Dalton Trans. pp. 4617-4621.], 2005[Balakrishna, M. S., George, P. P. & Mobin, S. M. (2005). Polyhedron, 24, 475-480.]); Mague et al. (2007[Mague, J. T., Punji, B., Ganesamoorthy, C. & Balakrishna, M. S. (2007). Acta Cryst. E63, o4645.]). For details of the Cambridge Crystallographic Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19O2PSe

  • Mr = 365.25

  • Monoclinic, P 21 /c

  • a = 9.6212 (5) Å

  • b = 10.3914 (5) Å

  • c = 17.1087 (9) Å

  • β = 99.618 (5)°

  • V = 1686.45 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 120 K

  • 0.22 × 0.2 × 0.12 mm

Data collection
  • Oxford Diffraction KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.588, Tmax = 0.760

  • 12450 measured reflections

  • 3674 independent reflections

  • 2596 reflections with I > 2σ(I)

  • Rint = 0.06

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.147

  • S = 0.97

  • 3674 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 2.18 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Comparison of the geometry of the title compound with related compounds (Å, °)

CSD refcode(Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) P—Se P—O Ph–Ph dihedral Smaller torsion Reference
  2.0769 (11) 1.650 (3) 72.64 (14) 7.0 (4) This work
MPSEPO 2.080 1.619 82.62 4.15 Lepicard et al. (1969[Lepicard, G., de Saint-Giniez-Liebig, D., Laurent, A. & Rérat, C. (1969). Acta Cryst. B25, 617-624.])
MUMFUV 2.072 1.624 80.93 13.32 Balakrishna et al. (2002[Balakrishna, M. S., Panda, R. & Mague, J. T. (2002). J. Chem. Soc. Dalton Trans. pp. 4617-4621.])
  2.070 1.612 75.01 22.34  
RAMXEJ 2.089 1.596 78.65 8.84 Balakrishna et al. (2005[Balakrishna, M. S., George, P. P. & Mobin, S. M. (2005). Polyhedron, 24, 475-480.])
  2.079 1.585 78.49 6.58  
YIQOM 2.089 1.620 70.15 6.15 Mague et al. (2007[Mague, J. T., Punji, B., Ganesamoorthy, C. & Balakrishna, M. S. (2007). Acta Cryst. E63, o4645.])

Data collection: CrysAlis CCD (Oxford Diffraction 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

O-acyl monoselenophosphates were studied in a search for potential selenoacylating agents. O-pivaloyl-diphenylmonoselenophosphinate, C17H19O2PSe, was obtained in the reaction of diphenylmonoselenophosphinic acid ammonium salt with pivaloyl chloride (Rachon et al., 2005). The P—Se bond length is normal for a double bond, while the P—O bond is rather long when compared with the related O-alkyl and O-aryl derivatives (see Table 1). One phenyl ring is placed periplanar to the Se—P—C plane, while the dihedral angle between the two phenyl rings is relatively small. The carbonyl group is in a synperiplanar position [torsion angle = 8.9 (6)°] to one of methyl groups in the pivaloyl group.

This compound, together with O-p-chlorobenzoyl-diphenylselenophosphinate, reported in the following paper, are the first structures determined by X-ray diffraction of O-acyl derivatives of diphenylmonoselenophosphinic acid reported. Only four related O-alkyl and O-aryl derivatives were characterized by x-ray study so far: methyl diphenylselenophosphinate (Lepicard et al., 1969), 1,4-bis(diphenyl(seleno)phosphinito)cyclohexane (Balakrishna et al., 2005); 1,1'-methylene-bis(2-((diphenylphosphoroselenoyl)oxy)naphthalene) (Balakrishna et al., 2002) and O-2-naphthyl diphenylselenophosphinate (Mague et al., 2007).

Related literature top

Syntheses and chemical properties of O-acyl monoselenophosphates have already been described by Rachon et al. (2005). For other monoselenophosphates, such as O-alkyl or O-aryl esters, see: Lepicard et al. (1969); Balakrishna et al. (2002, 2005); Mague et al. (2007).

For related literature, see: Allen (2002).

Experimental top

O-Pivaloyl diphenylmonoselenophosphinate was obtained in the reaction of diphenylmonoselenophosphinic acid ammonium salt with pivaloyl chloride with 43% yield (Rachon et al., 2005, compound numbered as 2u, melting point 63-65 °C). Relevant 1H, 13C, 31P NMR, MS and IR spectra were recorded and are consistent with the formula anticipated - see the supporting information for the article cited.

Refinement top

Hydrogen atoms were placed in calculated positions and refined using a standard riding model. C–H bond lengths were set to 0.98 or 0.95 Å and Uiso(H) were set to 1.5 or 1.2 Ueq(C) for methyl or aromatic C–H groups, respectively.

The residual electron density peak is 0.84 Å from Se1, the deepest electron density hole is 1.24 Å from Se1.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction 2008); cell refinement: CrysAlis RED (Oxford Diffraction 2008); data reduction: CrysAlis RED (Oxford Diffraction 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-numbering scheme (50% probability displacement ellipsoids).
O-pivaloyl diphenylselenophosphinate top
Crystal data top
C17H19O2PSeF(000) = 744
Mr = 365.25Dx = 1.439 Mg m3
Monoclinic, P21/cMelting point: 337(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.6212 (5) ÅCell parameters from 5361 reflections
b = 10.3914 (5) Åθ = 2.0–32.4°
c = 17.1087 (9) ŵ = 2.32 mm1
β = 99.618 (5)°T = 120 K
V = 1686.45 (15) Å3Fragment, colourless
Z = 40.22 × 0.2 × 0.12 mm
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
3674 independent reflections
Radiation source: Mo Kα radiation2596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.06
ω scans (0.75° width)θmax = 27°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1212
Tmin = 0.588, Tmax = 0.760k = 1213
12450 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0979P)2]
where P = (Fo2 + 2Fc2)/3
3674 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 2.18 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C17H19O2PSeV = 1686.45 (15) Å3
Mr = 365.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6212 (5) ŵ = 2.32 mm1
b = 10.3914 (5) ÅT = 120 K
c = 17.1087 (9) Å0.22 × 0.2 × 0.12 mm
β = 99.618 (5)°
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
3674 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2596 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.760Rint = 0.06
12450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 0.97Δρmax = 2.18 e Å3
3674 reflectionsΔρmin = 0.65 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P20.85844 (10)0.75002 (9)0.28847 (6)0.0208 (2)
Se10.78275 (4)0.76292 (4)0.16772 (2)0.02698 (17)
O10.8422 (2)0.6100 (2)0.33157 (15)0.0243 (6)
O20.6042 (3)0.6037 (3)0.30807 (16)0.0310 (6)
C10.7130 (4)0.5607 (4)0.3426 (2)0.0243 (8)
C20.7308 (4)0.4557 (4)0.4043 (2)0.0274 (8)
C30.7855 (5)0.5221 (5)0.4839 (2)0.0424 (11)
H3A0.87890.55880.48260.064*
H3B0.79230.45880.52690.064*
H3C0.72030.59080.4930.064*
C40.8353 (4)0.3542 (4)0.3869 (3)0.0341 (10)
H4A0.79890.31180.33650.051*
H4B0.84860.29030.42960.051*
H4C0.92580.39530.38350.051*
C50.5874 (4)0.3949 (4)0.4078 (3)0.0412 (11)
H5A0.52260.46090.42120.062*
H5B0.59840.32720.44820.062*
H5C0.54930.35740.3560.062*
C61.0474 (4)0.7623 (3)0.3126 (2)0.0211 (8)
C71.1309 (4)0.6520 (4)0.3187 (2)0.0263 (8)
H71.08890.5690.31360.032*
C81.2769 (4)0.6654 (4)0.3324 (2)0.0273 (9)
H81.33480.59080.33650.033*
C91.3386 (4)0.7856 (4)0.3399 (2)0.0298 (9)
H91.43840.79350.34940.036*
C101.2550 (4)0.8946 (4)0.3337 (2)0.0277 (9)
H101.29760.97730.33870.033*
C111.1095 (4)0.8839 (4)0.3203 (2)0.0242 (8)
H111.05240.95890.31640.029*
C120.7863 (4)0.8624 (4)0.3506 (2)0.0254 (8)
C130.6748 (4)0.9438 (4)0.3208 (2)0.0262 (8)
H130.63640.94090.2660.031*
C140.6194 (4)1.0279 (4)0.3691 (3)0.0338 (10)
H140.54471.0840.34760.041*
C150.6734 (4)1.0307 (4)0.4499 (3)0.0357 (10)
H150.63431.08750.48390.043*
C160.7843 (5)0.9505 (4)0.4806 (3)0.0376 (10)
H160.82160.9530.53560.045*
C170.8406 (4)0.8673 (4)0.4316 (2)0.0307 (9)
H170.91690.81280.4530.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P20.0152 (5)0.0257 (5)0.0208 (5)0.0002 (4)0.0014 (4)0.0001 (4)
Se10.0227 (2)0.0355 (3)0.0210 (2)0.00040 (17)0.00147 (16)0.00093 (15)
O10.0153 (13)0.0272 (13)0.0289 (14)0.0003 (10)0.0002 (10)0.0038 (11)
O20.0159 (14)0.0380 (16)0.0371 (16)0.0016 (12)0.0016 (12)0.0088 (13)
C10.0201 (19)0.0271 (19)0.026 (2)0.0059 (16)0.0044 (16)0.0059 (15)
C20.0211 (19)0.035 (2)0.025 (2)0.0008 (17)0.0007 (16)0.0055 (16)
C30.050 (3)0.050 (3)0.025 (2)0.004 (2)0.003 (2)0.0038 (19)
C40.026 (2)0.035 (2)0.040 (2)0.0042 (18)0.0028 (18)0.0097 (18)
C50.023 (2)0.046 (3)0.054 (3)0.0007 (19)0.006 (2)0.017 (2)
C60.0152 (17)0.0296 (19)0.0183 (18)0.0002 (14)0.0024 (14)0.0004 (14)
C70.023 (2)0.0282 (19)0.027 (2)0.0011 (16)0.0032 (16)0.0007 (15)
C80.020 (2)0.031 (2)0.031 (2)0.0051 (16)0.0040 (16)0.0002 (16)
C90.019 (2)0.041 (2)0.028 (2)0.0034 (17)0.0029 (16)0.0027 (18)
C100.023 (2)0.033 (2)0.025 (2)0.0076 (16)0.0008 (16)0.0022 (16)
C110.022 (2)0.0279 (19)0.0225 (19)0.0044 (16)0.0031 (15)0.0010 (15)
C120.020 (2)0.0263 (19)0.030 (2)0.0003 (16)0.0039 (16)0.0025 (16)
C130.0209 (19)0.028 (2)0.030 (2)0.0002 (16)0.0040 (16)0.0016 (16)
C140.021 (2)0.032 (2)0.048 (3)0.0008 (17)0.0052 (19)0.0006 (19)
C150.035 (2)0.035 (2)0.039 (3)0.0017 (19)0.013 (2)0.0078 (19)
C160.047 (3)0.039 (2)0.028 (2)0.002 (2)0.0062 (19)0.0013 (18)
C170.030 (2)0.034 (2)0.026 (2)0.0029 (18)0.0008 (17)0.0022 (17)
Geometric parameters (Å, º) top
P2—O11.650 (3)C7—C81.392 (5)
P2—C121.795 (4)C7—H70.95
P2—C61.801 (4)C8—C91.381 (6)
P2—Se12.0769 (11)C8—H80.95
O1—C11.386 (4)C9—C101.383 (6)
O2—C11.200 (4)C9—H90.95
C1—C21.507 (5)C10—C111.384 (5)
C2—C41.521 (5)C10—H100.95
C2—C51.527 (5)C11—H110.95
C2—C31.539 (5)C12—C131.394 (5)
C3—H3A0.98C12—C171.398 (5)
C3—H3B0.98C13—C141.370 (5)
C3—H3C0.98C13—H130.95
C4—H4A0.98C14—C151.394 (6)
C4—H4B0.98C14—H140.95
C4—H4C0.98C15—C161.386 (6)
C5—H5A0.98C15—H150.95
C5—H5B0.98C16—C171.377 (6)
C5—H5C0.98C16—H160.95
C6—C71.393 (5)C17—H170.95
C6—C111.395 (5)
O1—P2—C12103.55 (16)C7—C6—P2120.4 (3)
O1—P2—C697.32 (15)C11—C6—P2119.1 (3)
C12—P2—C6107.07 (17)C8—C7—C6118.9 (3)
O1—P2—Se1117.24 (10)C8—C7—H7120.5
C12—P2—Se1116.17 (13)C6—C7—H7120.5
C6—P2—Se1113.35 (13)C9—C8—C7120.8 (4)
C1—O1—P2122.8 (2)C9—C8—H8119.6
O2—C1—O1121.6 (3)C7—C8—H8119.6
O2—C1—C2127.0 (3)C8—C9—C10119.9 (4)
O1—C1—C2111.3 (3)C8—C9—H9120
C1—C2—C4111.5 (3)C10—C9—H9120
C1—C2—C5109.3 (3)C9—C10—C11120.4 (4)
C4—C2—C5110.6 (3)C9—C10—H10119.8
C1—C2—C3106.1 (3)C11—C10—H10119.8
C4—C2—C3110.1 (3)C10—C11—C6119.6 (3)
C5—C2—C3109.2 (3)C10—C11—H11120.2
C2—C3—H3A109.5C6—C11—H11120.2
C2—C3—H3B109.5C13—C12—C17118.5 (4)
H3A—C3—H3B109.5C13—C12—P2121.9 (3)
C2—C3—H3C109.5C17—C12—P2119.5 (3)
H3A—C3—H3C109.5C14—C13—C12121.4 (4)
H3B—C3—H3C109.5C14—C13—H13119.3
C2—C4—H4A109.5C12—C13—H13119.3
C2—C4—H4B109.5C13—C14—C15119.5 (4)
H4A—C4—H4B109.5C13—C14—H14120.2
C2—C4—H4C109.5C15—C14—H14120.2
H4A—C4—H4C109.5C16—C15—C14119.9 (4)
H4B—C4—H4C109.5C16—C15—H15120
C2—C5—H5A109.5C14—C15—H15120
C2—C5—H5B109.5C17—C16—C15120.2 (4)
H5A—C5—H5B109.5C17—C16—H16119.9
C2—C5—H5C109.5C15—C16—H16119.9
H5A—C5—H5C109.5C16—C17—C12120.4 (4)
H5B—C5—H5C109.5C16—C17—H17119.8
C7—C6—C11120.4 (3)C12—C17—H17119.8
Se1—P2—O1—C169.5 (3)O2—C1—C2—C3108.5 (5)
C6—P2—O1—C1169.4 (3)O2—C1—C2—C4131.6 (4)
C12—P2—O1—C159.8 (3)O2—C1—C2—C58.9 (6)
Se1—P2—C6—C792.1 (3)P2—C6—C7—C8175.9 (3)
Se1—P2—C6—C1184.0 (3)C11—C6—C7—C80.1 (5)
O1—P2—C6—C731.8 (3)P2—C6—C11—C10175.8 (3)
O1—P2—C6—C11152.1 (3)C7—C6—C11—C100.3 (5)
C12—P2—C6—C7138.5 (3)C6—C7—C8—C90.0 (5)
C12—P2—C6—C1145.4 (3)C7—C8—C9—C100.1 (5)
Se1—P2—C12—C137.0 (4)C8—C9—C10—C110.3 (5)
Se1—P2—C12—C17174.5 (3)C9—C10—C11—C60.4 (5)
O1—P2—C12—C13123.0 (3)P2—C12—C13—C14179.1 (3)
O1—P2—C12—C1755.5 (4)C17—C12—C13—C140.5 (6)
C6—P2—C12—C13134.8 (3)P2—C12—C17—C16178.3 (3)
C6—P2—C12—C1746.7 (4)C13—C12—C17—C160.3 (6)
P2—O1—C1—O215.0 (5)C12—C13—C14—C151.3 (6)
P2—O1—C1—C2162.2 (2)C13—C14—C15—C161.3 (6)
O1—C1—C2—C368.6 (4)C14—C15—C16—C170.5 (6)
O1—C1—C2—C451.4 (4)C15—C16—C17—C120.3 (7)
O1—C1—C2—C5174.0 (3)

Experimental details

Crystal data
Chemical formulaC17H19O2PSe
Mr365.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.6212 (5), 10.3914 (5), 17.1087 (9)
β (°) 99.618 (5)
V3)1686.45 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.22 × 0.2 × 0.12
Data collection
DiffractometerOxford Diffraction KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.588, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
12450, 3674, 2596
Rint0.06
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.147, 0.97
No. of reflections3674
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.18, 0.65

Computer programs: CrysAlis CCD (Oxford Diffraction 2008), CrysAlis RED (Oxford Diffraction 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Comparison of the geometry of the title compound with related compounds (Å, °) top
CSD refcodeP—SeP—OPh–Ph dihedralSmaller torsionReference
(Allen, 2002)Ph–Ph dihedralSmaller torsion
2.0769 (11)1.650 (3)72.64 (14)7.0 (4)This work
MPSEPO2.0801.61982.624.15Lepicard et al. (1969)
MUMFUV2.0721.62480.9313.32Balakrishna et al. (2002)
2.0701.61275.0122.34
RAMXEJ2.0891.59678.658.84Balakrishna et al. (2005)
2.0791.58578.496.58
YIQOM2.0891.62070.156.15Mague et al. (2007)
 

Acknowledgements

GC thanks the Gdansk University of Technology for financial support (internal grant No. 014668 t. 008).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBalakrishna, M. S., George, P. P. & Mobin, S. M. (2005). Polyhedron, 24, 475–480.  Web of Science CSD CrossRef CAS Google Scholar
First citationBalakrishna, M. S., Panda, R. & Mague, J. T. (2002). J. Chem. Soc. Dalton Trans. pp. 4617–4621.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLepicard, G., de Saint-Giniez-Liebig, D., Laurent, A. & Rérat, C. (1969). Acta Cryst. B25, 617–624.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMague, J. T., Punji, B., Ganesamoorthy, C. & Balakrishna, M. S. (2007). Acta Cryst. E63, o4645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRachon, J., Cholewinski, G. & Witt, D. (2005). Chem. Commun. pp. 2692–2694.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o853-o854
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds