organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

O-4-Chloro­benzoyl di­phenyl­seleno­phosphinate

aChemical Faculty, Gdansk University of Technology, Narutowicza 11/12, Gdansk PL-80233, Poland
*Correspondence e-mail: jaroslaw.chojnacki@chem.pg.gda.pl

(Received 23 January 2009; accepted 13 March 2009; online 25 March 2009)

The title compound, C19H14ClO2PSe, was obtained in the reaction of the diphenyl­monoseleno­phosphinic acid ammonium salt with 4-chloro­benzoyl chloride. The dihedral angle between the P-bonded aromatic rings is 72.64 (14)°. Packing of the mol­ecules in the crystal is reinforced by ππ stacking inter­actions between two inversion-related 4-chloro­benzene rings [centroid-centroid separation = 4.189 (2) Å] and a C—H⋯O interaction also occurs.

Related literature

Syntheses of O-acyl monoseleno­phosphates have already been described by Rachon et al. (2005[Rachon, J., Cholewinski, G. & Witt, D. (2005). Chem. Commun. pp. 2692-2694.]); Mielniczak & Łopusinski (2001[Mielniczak, G. & Łopusinski, A. (2001). Synth. Commun. 31, 3659-3664.]). For a related O-acyl derivative, see Cholewinski et al. (2009[Cholewinski, G., Chojnacki, J., Pikies, J. & Rachon, J. (2009). Acta Cryst. E65, o853-o854.]). For related O-alkyl or O-aryl derivatives, see: Lepicard et al. (1969[Lepicard, G., de Saint-Giniez-Liebig, D., Laurent, A. & Rérat, C. (1969). Acta Cryst. B25, 617-624.]); Balakrishna et al. (2002[Balakrishna, M. S., Panda, R. & Mague, J. T. (2002). J. Chem. Soc. Dalton Trans. pp. 4617-4621.], 2005[Balakrishna, M. S., George, P. P. & Mobin, S. M. (2005). Polyhedron, 24, 475-480.]); Mague et al. (2007[Mague, J. T., Punji, B., Ganesamoorthy, C. & Balakrishna, M. S. (2007). Acta Cryst. E63, o4645.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14ClO2PSe

  • Mr = 419.68

  • Monoclinic, P 21 /c

  • a = 9.3390 (5) Å

  • b = 9.7132 (5) Å

  • c = 19.1353 (15) Å

  • β = 97.059 (6)°

  • V = 1722.64 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 120 K

  • 0.46 × 0.33 × 0.26 mm

Data collection
  • Oxford Diffraction KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.325, Tmax = 0.53

  • 14128 measured reflections

  • 4158 independent reflections

  • 3376 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.162

  • S = 1.16

  • 4158 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 1.82 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.95 2.59 3.359 (6) 138
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

O-acyl monoselenophosphates were studied as part of a search for potential selenoacylating agents. O-4-chlorobenzoyl-diphenylmonoselenophosphinate was obtained in the reaction of diphenylmonoselenophosphinic acid ammonium salt with 4-chlorobenzoyl chloride (Rachon et al. 2005).

The title compound, C19H14ClO2PSe, together with O-pivaloyl- diphenylselenophosphinate, reported in our preceding paper (Cholewinski et al., 2009) are the first reported X-ray diffraction structures of O-acyl derivatives of diphenylmonoselenophosphinic acid. Several other monoselenophosphinates, such as O-alkyl esters have been characterized by X-ray diffraction (Lepicard et al., 1969; Balakrishna et al., 2005; Balakrishna et al., 2002; Mague et al., 2007).

The P–Se bond length is in the usual range, while the P–O bond is longer than in O-aryl or O-alkyl derivatives, but very close to the value for the other O-acyl derivative, reported in our preceding paper (Cholewinski et al., 2009). Unlike the pivaloyl analogue, no phenyl ring is close to being synplanar with the Se–P–C plane. The smallest Se–P–C–C torsion angle is relatively large at 25.7 (4)°. Noteworthy is that the carboxyl group is twisted in relation to the adjacent phenyl ring, forming a dihedral angle between the C1–C6 phenyl ring and the plane defined by O1/C7/O2 of 11.6 (7)°.

Packing of O-4-chlorobenzoyl-diphenylmonoselenophosphinate molecules in the crystal is reinforced by π - π stacking interactions between two adjacent 4-chlorobenzene rings residing close to a symmetry centre. The centroid to centroid distance is 4.189 (2) Å, the dihedral angle between the planes is α=0.0° and the angle between the vector span on the centroids and the vector normal to the ring is β=35.08°. No classical hydrogen bonds are present, however a weak C–H···O interaction link molecules into chains along the a-axis.

Related literature top

Syntheses of O-acyl monoselenophosphates have already been described by Rachon et al. (2005). For a related O-acyl derivative, see Cholewinski et al. (2009). For related O-alkyl or O-aryl derivatives, see: Lepicard et al. (1969); Balakrishna et al. (2002, 2005); Mague et al. (2007).

For related literature, see: Mielniczak & Łopusinski (2001).

Experimental top

O-4-chlorobenzoyl-diphenylmonoselenophosphinate was obtained in the reaction of diphenylmonoselenophosphinic acid ammonium salt (Mielniczak et al., 2001) with 4-chlorobenzoyl chloride in 46% yield according to Rachon et al. (2005). The compound which was encoded in this paper as 2t, melts at 105-107 °C. Relevant 1H, 13C, 31P NMR, MS and IR spectra were recorded and are consistent with the formula anticipated - see the supporting information for the article cited.

Refinement top

Hydrogen atoms were placed in calculated positions and refined using a standard riding model. C–H bond lengths were set to 0.95Å and Uiso(H) were set to 1.2Ueq(C) for aromatic C–H groups, respectively. The residual electron-density peak is 0.95Å from Se1 and the deepest electron-density hole is 1.49Å from Se1.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-numbering scheme (50% probability displacement ellipsoids).
O-4-Chlorobenzoyl diphenylselenophosphinate top
Crystal data top
C19H14ClO2PSeF(000) = 840
Mr = 419.68Dx = 1.618 Mg m3
Monoclinic, P21/cMelting point: 379(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.3390 (5) ÅCell parameters from 9084 reflections
b = 9.7132 (5) Åθ = 2.1–32.4°
c = 19.1353 (15) ŵ = 2.44 mm1
β = 97.059 (6)°T = 120 K
V = 1722.64 (19) Å3Prism, colourless
Z = 40.46 × 0.33 × 0.26 mm
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
4158 independent reflections
Radiation source: enhance3376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scans (0.75° width)θmax = 28°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1212
Tmin = 0.325, Tmax = 0.53k = 1212
14128 measured reflectionsl = 2125
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0811P)2 + 5.5587P]
where P = (Fo2 + 2Fc2)/3
4158 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 1.82 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C19H14ClO2PSeV = 1722.64 (19) Å3
Mr = 419.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3390 (5) ŵ = 2.44 mm1
b = 9.7132 (5) ÅT = 120 K
c = 19.1353 (15) Å0.46 × 0.33 × 0.26 mm
β = 97.059 (6)°
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
4158 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3376 reflections with I > 2σ(I)
Tmin = 0.325, Tmax = 0.53Rint = 0.045
14128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.16Δρmax = 1.82 e Å3
4158 reflectionsΔρmin = 0.56 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.28670 (5)1.03290 (5)0.35818 (2)0.02233 (16)
Cl30.57203 (12)0.18536 (11)0.48614 (6)0.0244 (2)
P10.15102 (11)0.87791 (11)0.31430 (5)0.0146 (2)
O10.2030 (3)0.7199 (3)0.33713 (15)0.0179 (6)
O20.3944 (3)0.7246 (4)0.27566 (17)0.0242 (7)
C10.3808 (4)0.5449 (4)0.3593 (2)0.0167 (8)
C20.3182 (5)0.5004 (5)0.4180 (2)0.0206 (9)
H20.23620.54670.43140.025*
C30.3764 (5)0.3881 (5)0.4567 (2)0.0232 (9)
H30.33610.35840.49740.028*
C40.4933 (5)0.3202 (4)0.4353 (2)0.0186 (8)
C50.5533 (5)0.3590 (5)0.3756 (2)0.0197 (8)
H50.6310.30830.36060.024*
C60.4977 (5)0.4734 (5)0.3380 (2)0.0196 (8)
H60.53940.50310.29770.023*
C70.3321 (4)0.6701 (5)0.3192 (2)0.0177 (8)
C80.1201 (4)0.8755 (4)0.2195 (2)0.0136 (7)
C90.1340 (5)0.9975 (4)0.1825 (2)0.0192 (8)
H90.16181.07990.20720.023*
C100.1069 (5)0.9982 (5)0.1093 (2)0.0239 (9)
H100.11541.08140.08410.029*
C110.0675 (5)0.8778 (5)0.0733 (2)0.0235 (9)
H110.05110.8780.02330.028*
C120.0521 (5)0.7567 (5)0.1102 (2)0.0214 (9)
H120.02370.67450.08520.026*
C130.0776 (4)0.7549 (4)0.1828 (2)0.0186 (8)
H130.06630.67180.20780.022*
C140.0242 (4)0.8745 (4)0.3454 (2)0.0156 (8)
C150.1503 (5)0.8706 (5)0.2982 (2)0.0206 (9)
H150.14540.86670.24890.025*
C160.2835 (5)0.8724 (5)0.3239 (3)0.0261 (10)
H160.370.86870.29220.031*
C170.2900 (5)0.8795 (5)0.3957 (3)0.0259 (10)
H170.38120.8820.41280.031*
C180.1647 (5)0.8830 (5)0.4427 (2)0.0236 (9)
H180.170.88720.49190.028*
C190.0315 (5)0.8803 (5)0.4177 (2)0.0204 (8)
H190.05470.88240.44970.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0197 (2)0.0211 (3)0.0260 (3)0.00604 (17)0.00179 (16)0.00448 (17)
Cl30.0239 (5)0.0179 (5)0.0317 (6)0.0050 (4)0.0049 (4)0.0057 (4)
P10.0138 (5)0.0119 (5)0.0183 (5)0.0001 (4)0.0032 (4)0.0002 (4)
O10.0148 (13)0.0164 (15)0.0231 (14)0.0027 (11)0.0044 (11)0.0033 (11)
O20.0193 (15)0.0260 (17)0.0286 (16)0.0038 (13)0.0079 (12)0.0092 (13)
C10.0147 (18)0.015 (2)0.0198 (19)0.0007 (15)0.0009 (15)0.0001 (15)
C20.0164 (19)0.020 (2)0.027 (2)0.0034 (16)0.0084 (16)0.0015 (17)
C30.023 (2)0.022 (2)0.027 (2)0.0003 (18)0.0119 (17)0.0052 (18)
C40.0179 (19)0.0130 (19)0.024 (2)0.0018 (16)0.0004 (15)0.0008 (16)
C50.0167 (19)0.019 (2)0.024 (2)0.0048 (16)0.0042 (15)0.0031 (16)
C60.019 (2)0.022 (2)0.0178 (19)0.0028 (17)0.0034 (15)0.0014 (16)
C70.0133 (18)0.020 (2)0.0196 (19)0.0015 (16)0.0013 (14)0.0012 (16)
C80.0096 (16)0.0099 (18)0.0217 (19)0.0005 (14)0.0036 (14)0.0013 (15)
C90.020 (2)0.0115 (19)0.026 (2)0.0035 (16)0.0041 (16)0.0015 (15)
C100.026 (2)0.020 (2)0.025 (2)0.0035 (18)0.0029 (17)0.0077 (17)
C110.023 (2)0.027 (2)0.020 (2)0.0013 (19)0.0012 (16)0.0019 (18)
C120.021 (2)0.017 (2)0.026 (2)0.0016 (17)0.0017 (16)0.0032 (17)
C130.0181 (19)0.0122 (19)0.026 (2)0.0018 (16)0.0039 (15)0.0005 (16)
C140.0144 (18)0.0081 (17)0.025 (2)0.0001 (14)0.0047 (15)0.0018 (15)
C150.018 (2)0.021 (2)0.023 (2)0.0001 (17)0.0035 (16)0.0026 (17)
C160.0127 (19)0.030 (3)0.036 (2)0.0012 (18)0.0030 (17)0.007 (2)
C170.020 (2)0.021 (2)0.039 (3)0.0026 (18)0.0132 (18)0.0050 (19)
C180.029 (2)0.020 (2)0.024 (2)0.0018 (18)0.0112 (17)0.0012 (17)
C190.020 (2)0.017 (2)0.024 (2)0.0010 (17)0.0035 (16)0.0006 (16)
Geometric parameters (Å, º) top
Se1—P12.0774 (11)C9—C101.392 (6)
Cl3—C41.740 (4)C9—H90.95
P1—O11.653 (3)C10—C111.384 (7)
P1—C81.802 (4)C10—H100.95
P1—C141.809 (4)C11—C121.388 (6)
O1—C71.380 (5)C11—H110.95
O2—C71.197 (5)C12—C131.382 (6)
C1—C61.396 (6)C12—H120.95
C1—C21.397 (6)C13—H130.95
C1—C71.479 (6)C14—C151.394 (6)
C2—C31.392 (6)C14—C191.394 (6)
C2—H20.95C15—C161.393 (6)
C3—C41.380 (6)C15—H150.95
C3—H30.95C16—C171.383 (7)
C4—C51.385 (6)C16—H160.95
C5—C61.389 (6)C17—C181.387 (7)
C5—H50.95C17—H170.95
C6—H60.95C18—C191.387 (6)
C8—C91.395 (6)C18—H180.95
C8—C131.398 (6)C19—H190.95
O1—P1—C8105.05 (17)C10—C9—H9120
O1—P1—C1498.28 (17)C8—C9—H9120
C8—P1—C14106.94 (18)C11—C10—C9120.0 (4)
O1—P1—Se1114.93 (11)C11—C10—H10120
C8—P1—Se1115.52 (13)C9—C10—H10120
C14—P1—Se1114.32 (14)C10—C11—C12120.1 (4)
C7—O1—P1119.8 (3)C10—C11—H11119.9
C6—C1—C2120.0 (4)C12—C11—H11119.9
C6—C1—C7117.4 (4)C13—C12—C11120.4 (4)
C2—C1—C7122.6 (4)C13—C12—H12119.8
C3—C2—C1119.8 (4)C11—C12—H12119.8
C3—C2—H2120.1C12—C13—C8119.9 (4)
C1—C2—H2120.1C12—C13—H13120.1
C4—C3—C2119.2 (4)C8—C13—H13120.1
C4—C3—H3120.4C15—C14—C19120.2 (4)
C2—C3—H3120.4C15—C14—P1120.9 (3)
C3—C4—C5122.0 (4)C19—C14—P1118.8 (3)
C3—C4—Cl3119.3 (3)C16—C15—C14119.4 (4)
C5—C4—Cl3118.7 (3)C16—C15—H15120.3
C4—C5—C6118.8 (4)C14—C15—H15120.3
C4—C5—H5120.6C17—C16—C15120.1 (4)
C6—C5—H5120.6C17—C16—H16119.9
C5—C6—C1120.2 (4)C15—C16—H16119.9
C5—C6—H6119.9C16—C17—C18120.6 (4)
C1—C6—H6119.9C16—C17—H17119.7
O2—C7—O1122.2 (4)C18—C17—H17119.7
O2—C7—C1125.4 (4)C19—C18—C17119.8 (4)
O1—C7—C1112.4 (3)C19—C18—H18120.1
C9—C8—C13119.7 (4)C17—C18—H18120.1
C9—C8—P1119.1 (3)C18—C19—C14119.9 (4)
C13—C8—P1121.1 (3)C18—C19—H19120
C10—C9—C8119.9 (4)C14—C19—H19120
C8—P1—O1—C765.5 (3)Se1—P1—C8—C13156.6 (3)
C14—P1—O1—C7175.7 (3)C13—C8—C9—C100.7 (6)
Se1—P1—O1—C762.6 (3)P1—C8—C9—C10178.4 (3)
C6—C1—C2—C32.5 (7)C8—C9—C10—C110.5 (7)
C7—C1—C2—C3175.0 (4)C9—C10—C11—C121.2 (7)
C1—C2—C3—C41.5 (7)C10—C11—C12—C130.8 (7)
C2—C3—C4—C51.3 (7)C11—C12—C13—C80.4 (6)
C2—C3—C4—Cl3176.7 (4)C9—C8—C13—C121.1 (6)
C3—C4—C5—C62.9 (7)P1—C8—C13—C12178.8 (3)
Cl3—C4—C5—C6175.0 (3)O1—P1—C14—C15108.5 (4)
C4—C5—C6—C11.9 (7)C8—P1—C14—C150.1 (4)
C2—C1—C6—C50.8 (7)Se1—P1—C14—C15129.3 (3)
C7—C1—C6—C5176.8 (4)O1—P1—C14—C1973.5 (4)
P1—O1—C7—O215.8 (6)C8—P1—C14—C19177.9 (3)
P1—O1—C7—C1164.5 (3)Se1—P1—C14—C1948.7 (4)
C6—C1—C7—O29.5 (7)C19—C14—C15—C160.0 (7)
C2—C1—C7—O2168.1 (5)P1—C14—C15—C16178.0 (4)
C6—C1—C7—O1170.3 (4)C14—C15—C16—C170.6 (7)
C2—C1—C7—O112.2 (6)C15—C16—C17—C180.9 (8)
O1—P1—C8—C9153.4 (3)C16—C17—C18—C190.5 (7)
C14—P1—C8—C9102.8 (3)C17—C18—C19—C140.1 (7)
Se1—P1—C8—C925.7 (4)C15—C14—C19—C180.3 (7)
O1—P1—C8—C1328.9 (4)P1—C14—C19—C18177.6 (4)
C14—P1—C8—C1374.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.952.593.359 (6)138
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H14ClO2PSe
Mr419.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.3390 (5), 9.7132 (5), 19.1353 (15)
β (°) 97.059 (6)
V3)1722.64 (19)
Z4
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.46 × 0.33 × 0.26
Data collection
DiffractometerOxford Diffraction KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.325, 0.53
No. of measured, independent and
observed [I > 2σ(I)] reflections
14128, 4158, 3376
Rint0.045
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.162, 1.16
No. of reflections4158
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.82, 0.56

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.95002.59003.359 (6)138.00
Symmetry code: (i) x1, y, z.
 

Acknowledgements

JC and JP thank the Gdansk University of Technology for financial support (internal grant No. 014668 t. 005).

References

First citationBalakrishna, M. S., George, P. P. & Mobin, S. M. (2005). Polyhedron, 24, 475–480.  Web of Science CSD CrossRef CAS Google Scholar
First citationBalakrishna, M. S., Panda, R. & Mague, J. T. (2002). J. Chem. Soc. Dalton Trans. pp. 4617–4621.  Web of Science CSD CrossRef Google Scholar
First citationCholewinski, G., Chojnacki, J., Pikies, J. & Rachon, J. (2009). Acta Cryst. E65, o853–o854.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLepicard, G., de Saint-Giniez-Liebig, D., Laurent, A. & Rérat, C. (1969). Acta Cryst. B25, 617–624.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMague, J. T., Punji, B., Ganesamoorthy, C. & Balakrishna, M. S. (2007). Acta Cryst. E63, o4645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMielniczak, G. & Łopusinski, A. (2001). Synth. Commun. 31, 3659–3664.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRachon, J., Cholewinski, G. & Witt, D. (2005). Chem. Commun. pp. 2692–2694.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds