organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2,6-di­methyl-4-phenyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aCollege of Life Science, Ningxia University, Yinchuan 750021, People's Republic of China
*Correspondence e-mail: bai_mingsheng@163.com

(Received 24 February 2009; accepted 12 March 2009; online 19 March 2009)

The title mol­ecule, C19H23NO4, was synthesized by the reaction of benzaldehyde, ethyl acetoacetate and NH4HCO3. The dihydro­pyridine ring adopts a flattened boat conformation and the plane of the base of the boat forms a dihedral angle of 88.78 (9)° with the phenyl ring. The packing is stabilized by strong inter­molecular N—H⋯O and weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background, see: Cutshall et al. (2002[Cutshall, N. S., Kucera, K. A., Ursion, R., Latham, J. & Ihle, N. C. (2002). Bioorg. Med. Chem. Lett. 12, 1517-1520. ]); Henry (2004[Henry, G. D. (2004). Tetrahedron, 60, 6043-6061.]). For the crystal structure of the related compound diethyl 2,6-dimethyl-4-styryl-1,4-dihydro­pyridine-3,5-dicarb­oxyl­ate, see: Wang et al., (2007[Wang, J. P., Du, M. J., Fu, Y. J., Wang, Y. J., Li, N. & Zheng, A. X. (2007). Chin. J. Synth. Chem. 1, 42-45.]). For hydrogen bond definitions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23NO4

  • Mr = 329.38

  • Monoclinic, P 21 /c

  • a = 9.7502 (12) Å

  • b = 7.3854 (9) Å

  • c = 24.326 (2) Å

  • β = 92.567 (1)°

  • V = 1749.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.46 × 0.32 mm

Data collection
  • Siemens SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.973

  • 8718 measured reflections

  • 3084 independent reflections

  • 1989 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.131

  • S = 1.01

  • 3084 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.81 (3) 2.19 (3) 2.986 (3) 168 (3)
C3—H3⋯O1 0.98 2.35 2.733 (3) 103
C3—H3⋯O4 0.98 2.43 2.816 (3) 103
C7—H7⋯O1 0.93 2.55 3.169 (3) 124
C12—H12C⋯O2 0.96 2.27 2.841 (3) 116
C15—H15A⋯O3 0.96 2.42 2.762 (3) 101
C8—H8⋯O2ii 0.93 2.51 3.387 (3) 157
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The development of new methods for the synthesis of substituted pyridines is a motive for the current study. Substituted pyridines attract the interest because of their presence in numerous natural products along with a wide spectrum of their physiological activities (Cutshall et al., 2002). Pyridine derivatives and their complexes have been studied for their fungicidal and antibacterial effects, as well as antiviral drugs (Henry, 2004).

In this paper, we present the structure of diethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (Fig. 1).

The bond lengths and angles are normal and comparable to those observed in the reported diethyl 2,6-dimethyl-4-styryl-1,4-dihydropyridine-3,5-dicarboxylate (Wang et al., 2007).

In the crystal structure, the dihydropyridine ring adopts a flattened boat conformation and the plane of the base of the boat (C1/C2/C4/C5) contains 88.78 (9)° with the phenyl ring. There are present strong (Desiraju & Steiner, 1999) intermolecular N—H···O hydrogen bonds (Tab. 1) that link the molecules into chains propagated in the direction [010].

Related literature top

For general background, see: Cutshall et al. (2002); Henry (2004). For the crystal structure of the related compound diethyl 2,6-dimethyl-4-styryl-1,4-dihydropyridine-3,5-dicarboxylate, see: Wang et al., (2007). For hydrogen bond definitions, see: Desiraju & Steiner (1999).

Experimental top

Fresh benzaldehyde (6 mmol), ethyl acetoacetate (6 mmol) and NH4HCO3 (6 mmol) were mixed in a 50 ml flask. After the mixture had been stirred for 3 h at 293 K, the crude product was obtained. The title crystals were obtained by recrystallization from ethanol, affording the title compound as a yellow block crystalline solid. Elemental analysis: calculated for C19H23NO4: C 69.28, H 7.04, N 4.25 weight%; found: C 69.29, H 7.85, N 4.29 weight%.

Refinement top

All the hydrogens were discernible in the difference electron density map. Except for the secondary-amine H atom whose coordinates were refined freely the remaining hydrogens were situated into the idealized positions and were refined within a riding model approximation: Cmethyl—H = 0.96, Cmethylene—H 0.97, Cmethine = 0.98 Å. Uiso(H) = 1.2 UeqCmethylene/Cmethine/Nsecondary-amine; Uiso(H) = 1.5 Ueq(Cmethyl). The methyl groups were allowed to rotate during the refinement.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 30% probability level.
Diethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C19H23NO4F(000) = 704
Mr = 329.38Dx = 1.250 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 2342 reflections
a = 9.7502 (12) Åθ = 2.6–27.7°
b = 7.3854 (9) ŵ = 0.09 mm1
c = 24.326 (2) ÅT = 298 K
β = 92.567 (1)°Block, yellow
V = 1749.9 (3) Å30.50 × 0.46 × 0.32 mm
Z = 4
Data collection top
Siemens SMART 1000 CCD
diffractometer
3084 independent reflections
Radiation source: fine-focus sealed tube1989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 711
Tmin = 0.958, Tmax = 0.973k = 88
8718 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.8294P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3084 reflectionsΔρmax = 0.22 e Å3
225 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
85 constraintsExtinction coefficient: 0.0027 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H23NO4V = 1749.9 (3) Å3
Mr = 329.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7502 (12) ŵ = 0.09 mm1
b = 7.3854 (9) ÅT = 298 K
c = 24.326 (2) Å0.50 × 0.46 × 0.32 mm
β = 92.567 (1)°
Data collection top
Siemens SMART 1000 CCD
diffractometer
3084 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1989 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.973Rint = 0.033
8718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.22 e Å3
3084 reflectionsΔρmin = 0.18 e Å3
225 parameters
Special details top

Experimental. The sample was cut out from a larger slab crystal.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3363 (2)1.1267 (3)0.55024 (8)0.0405 (5)
H10.327 (3)1.230 (4)0.5394 (10)0.049*
O10.57917 (16)0.6975 (2)0.65667 (7)0.0476 (5)
O20.66266 (19)0.9781 (3)0.66376 (8)0.0619 (6)
O30.14967 (17)0.6965 (2)0.46314 (6)0.0468 (5)
O40.2624 (2)0.5071 (2)0.51964 (7)0.0572 (5)
C10.4405 (2)1.0939 (3)0.58911 (9)0.0376 (6)
C20.4587 (2)0.9233 (3)0.60794 (9)0.0332 (5)
C30.3494 (2)0.7821 (3)0.59344 (8)0.0324 (5)
H30.39370.66300.59270.039*
C40.2846 (2)0.8200 (3)0.53680 (8)0.0318 (5)
C50.2721 (2)0.9937 (3)0.51905 (9)0.0356 (5)
C60.2424 (2)0.7790 (3)0.63775 (8)0.0323 (5)
C70.2655 (2)0.6791 (4)0.68509 (10)0.0469 (6)
H70.34360.60700.68880.056*
C80.1752 (3)0.6838 (4)0.72719 (10)0.0565 (8)
H80.19390.61750.75920.068*
C90.0577 (3)0.7862 (4)0.72192 (10)0.0538 (7)
H90.00350.78910.75010.065*
C100.0315 (3)0.8837 (4)0.67494 (10)0.0497 (7)
H100.04830.95240.67100.060*
C110.1231 (2)0.8805 (3)0.63333 (10)0.0411 (6)
H110.10430.94810.60160.049*
C120.5222 (3)1.2590 (3)0.60462 (11)0.0547 (7)
H12A0.48921.30920.63790.082*
H12B0.51261.34690.57560.082*
H12C0.61721.22680.61020.082*
C130.5757 (2)0.8760 (3)0.64511 (9)0.0387 (6)
C140.2330 (2)0.6604 (3)0.50671 (9)0.0345 (5)
C150.1963 (3)1.0650 (3)0.46890 (10)0.0508 (7)
H15A0.22140.99650.43730.076*
H15B0.21961.19000.46380.076*
H15C0.09931.05430.47330.076*
C160.6846 (3)0.6355 (4)0.69600 (11)0.0582 (8)
H16A0.76900.70090.69020.070*
H16B0.70190.50790.68980.070*
C170.6457 (4)0.6618 (5)0.75336 (12)0.0819 (10)
H17A0.63620.78880.76060.123*
H17B0.71560.61180.77790.123*
H17C0.56010.60180.75890.123*
C180.1024 (3)0.5457 (3)0.42944 (10)0.0497 (7)
H18A0.04770.46400.45070.060*
H18B0.18000.47910.41620.060*
C190.0187 (4)0.6213 (4)0.38256 (12)0.0757 (10)
H19A0.05620.68970.39620.114*
H19B0.01670.52420.35980.114*
H19C0.07470.69880.36120.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0507 (13)0.0230 (10)0.0470 (12)0.0013 (10)0.0054 (10)0.0019 (9)
O10.0410 (10)0.0462 (11)0.0542 (11)0.0029 (8)0.0141 (8)0.0051 (8)
O20.0573 (12)0.0616 (12)0.0647 (12)0.0180 (10)0.0213 (10)0.0014 (10)
O30.0648 (11)0.0324 (9)0.0415 (9)0.0024 (8)0.0184 (8)0.0023 (7)
O40.0876 (14)0.0259 (9)0.0555 (11)0.0040 (9)0.0245 (10)0.0001 (8)
C10.0402 (14)0.0340 (14)0.0385 (13)0.0032 (11)0.0009 (11)0.0053 (10)
C20.0344 (12)0.0335 (13)0.0316 (11)0.0016 (10)0.0000 (10)0.0018 (10)
C30.0371 (13)0.0252 (12)0.0345 (12)0.0002 (10)0.0037 (10)0.0014 (9)
C40.0373 (13)0.0273 (12)0.0305 (11)0.0001 (10)0.0014 (10)0.0010 (9)
C50.0425 (14)0.0316 (12)0.0327 (12)0.0017 (11)0.0009 (10)0.0003 (10)
C60.0356 (13)0.0285 (12)0.0323 (12)0.0057 (10)0.0052 (9)0.0015 (9)
C70.0388 (14)0.0544 (17)0.0468 (15)0.0019 (12)0.0055 (12)0.0163 (12)
C80.0498 (16)0.078 (2)0.0414 (15)0.0118 (15)0.0034 (13)0.0210 (14)
C90.0481 (16)0.0715 (19)0.0424 (15)0.0113 (15)0.0079 (12)0.0010 (14)
C100.0471 (15)0.0519 (16)0.0507 (16)0.0061 (13)0.0075 (13)0.0032 (13)
C110.0452 (14)0.0398 (14)0.0382 (13)0.0031 (12)0.0006 (11)0.0069 (11)
C120.0603 (17)0.0389 (15)0.0641 (17)0.0110 (13)0.0057 (14)0.0053 (13)
C130.0356 (13)0.0459 (15)0.0347 (13)0.0038 (12)0.0019 (10)0.0027 (11)
C140.0421 (13)0.0304 (13)0.0309 (12)0.0003 (11)0.0005 (10)0.0006 (10)
C150.0710 (18)0.0355 (14)0.0446 (15)0.0015 (13)0.0099 (13)0.0069 (11)
C160.0473 (16)0.0625 (19)0.0629 (18)0.0087 (14)0.0179 (13)0.0062 (14)
C170.091 (2)0.098 (3)0.0554 (19)0.010 (2)0.0085 (17)0.0202 (18)
C180.0689 (18)0.0353 (14)0.0436 (14)0.0102 (13)0.0112 (13)0.0056 (11)
C190.105 (3)0.0559 (18)0.0620 (19)0.0032 (18)0.0383 (18)0.0064 (15)
Geometric parameters (Å, º) top
N1—C51.375 (3)C8—H80.9300
N1—C11.378 (3)C9—C101.365 (4)
N1—H10.81 (3)C9—H90.9300
O1—C131.348 (3)C10—C111.380 (3)
O1—C161.447 (3)C10—H100.9300
O2—C131.208 (3)C11—H110.9300
O3—C141.333 (3)C12—H12A0.9600
O3—C181.445 (3)C12—H12B0.9600
O4—C141.206 (3)C12—H12C0.9600
C1—C21.349 (3)C15—H15A0.9600
C1—C121.495 (3)C15—H15B0.9600
C2—C131.466 (3)C15—H15C0.9600
C2—C31.522 (3)C16—C171.475 (4)
C3—C41.516 (3)C16—H16A0.9700
C3—C61.533 (3)C16—H16B0.9700
C3—H30.9800C17—H17A0.9600
C4—C51.357 (3)C17—H17B0.9600
C4—C141.464 (3)C17—H17C0.9600
C5—C151.493 (3)C18—C191.482 (4)
C6—C71.378 (3)C18—H18A0.9700
C6—C111.384 (3)C18—H18B0.9700
C7—C81.381 (3)C19—H19A0.9600
C7—H70.9300C19—H19B0.9600
C8—C91.374 (4)C19—H19C0.9600
C5—N1—C1123.83 (19)C1—C12—H12B109.5
C5—N1—H1116.7 (19)H12A—C12—H12B109.5
C1—N1—H1117.3 (19)C1—C12—H12C109.5
C13—O1—C16117.3 (2)H12A—C12—H12C109.5
C14—O3—C18117.68 (17)H12B—C12—H12C109.5
C2—C1—N1118.6 (2)O2—C13—O1121.4 (2)
C2—C1—C12128.0 (2)O2—C13—C2126.6 (2)
N1—C1—C12113.4 (2)O1—C13—C2111.9 (2)
C1—C2—C13121.2 (2)O4—C14—O3121.6 (2)
C1—C2—C3118.8 (2)O4—C14—C4123.6 (2)
C13—C2—C3119.83 (19)O3—C14—C4114.84 (19)
C4—C3—C2110.05 (17)C5—C15—H15A109.5
C4—C3—C6111.88 (17)C5—C15—H15B109.5
C2—C3—C6109.81 (17)H15A—C15—H15B109.5
C4—C3—H3108.3C5—C15—H15C109.5
C2—C3—H3108.3H15A—C15—H15C109.5
C6—C3—H3108.3H15B—C15—H15C109.5
C5—C4—C14125.3 (2)O1—C16—C17112.2 (2)
C5—C4—C3119.46 (19)O1—C16—H16A109.2
C14—C4—C3115.16 (18)C17—C16—H16A109.2
C4—C5—N1117.9 (2)O1—C16—H16B109.2
C4—C5—C15128.8 (2)C17—C16—H16B109.2
N1—C5—C15113.3 (2)H16A—C16—H16B107.9
C7—C6—C11117.4 (2)C16—C17—H17A109.5
C7—C6—C3120.3 (2)C16—C17—H17B109.5
C11—C6—C3122.23 (19)H17A—C17—H17B109.5
C6—C7—C8121.4 (2)C16—C17—H17C109.5
C6—C7—H7119.3H17A—C17—H17C109.5
C8—C7—H7119.3H17B—C17—H17C109.5
C9—C8—C7120.1 (2)O3—C18—C19107.3 (2)
C9—C8—H8119.9O3—C18—H18A110.3
C7—C8—H8119.9C19—C18—H18A110.3
C10—C9—C8119.5 (2)O3—C18—H18B110.3
C10—C9—H9120.2C19—C18—H18B110.3
C8—C9—H9120.2H18A—C18—H18B108.5
C9—C10—C11120.1 (2)C18—C19—H19A109.5
C9—C10—H10119.9C18—C19—H19B109.5
C11—C10—H10119.9H19A—C19—H19B109.5
C10—C11—C6121.4 (2)C18—C19—H19C109.5
C10—C11—H11119.3H19A—C19—H19C109.5
C6—C11—H11119.3H19B—C19—H19C109.5
C1—C12—H12A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.81 (3)2.19 (3)2.986 (3)168 (3)
C3—H3···O10.982.352.733 (3)103
C3—H3···O40.982.432.816 (3)103
C7—H7···O10.932.553.169 (3)124
C12—H12C···O20.962.272.841 (3)116
C15—H15A···O30.962.422.762 (3)101
C8—H8···O2ii0.932.513.387 (3)157
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H23NO4
Mr329.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.7502 (12), 7.3854 (9), 24.326 (2)
β (°) 92.567 (1)
V3)1749.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.46 × 0.32
Data collection
DiffractometerSiemens SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
8718, 3084, 1989
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.01
No. of reflections3084
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.81 (3)2.19 (3)2.986 (3)168 (3)
C3—H3···O10.982.352.733 (3)103
C3—H3···O40.982.432.816 (3)103
C7—H7···O10.932.553.169 (3)124
C12—H12C···O20.962.272.841 (3)116
C15—H15A···O30.962.422.762 (3)101
C8—H8···O2ii0.932.513.387 (3)157
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the support of the Natural Science Foundation of the College of Life Science, Ningxia University (grant No. 081040).

References

First citationCutshall, N. S., Kucera, K. A., Ursion, R., Latham, J. & Ihle, N. C. (2002). Bioorg. Med. Chem. Lett. 12, 1517–1520.   Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.  Google Scholar
First citationHenry, G. D. (2004). Tetrahedron, 60, 6043–6061.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, J. P., Du, M. J., Fu, Y. J., Wang, Y. J., Li, N. & Zheng, A. X. (2007). Chin. J. Synth. Chem. 1, 42–45.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds